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ABSTRACT
A common practice to keep the freshness of an offline Recommender
System (RS) is to train models that fit the user’s most recent be-
haviours while directly replacing the outdated historical model.
However, many feature engineering and computing resources are
used to train these historical models, but they are underutilized
in the downstream RS model training. In this paper, to turn these
historical models into treasures, we introduce a model inversed
data synthesis framework, which can recover training data infor-
mation from the historical model and use it for knowledge transfer.
This framework synthesizes a new form of data from the historical
model. Specifically, we ’invert’ an off-the-shield pretrained model
to synthesize binary class user-item pairs beginning from random
noise without requiring any additional information from the train-
ing dataset. To synthesize informative data from a pretrained model,
we propose a new continuous data type rather than the original
one- or multi-hot vectors. An additional statistical regularization is
added to further improve the quality of the synthetic data inverted
from the deep model with batch normalization. The experimental
results show that our framework can generalize across different
types of models. We can efficiently train different types of classical
Click-Through-Rate (CTR) prediction models from scratch with
significantly few inversed synthetic data (2 orders of magnitude).

∗Work done as an intern in Huawei Noah’s Ark Lab.
†Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’23, September 18–22, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0241-9/23/09. . . $15.00
https://doi.org/10.1145/3604915.3608789

Moreover, our framework can also work well in the knowledge
transfer scenarios such as model retraining and data-free knowl-
edge distillation.
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1 INTRODUCTION
Recommendation has been widely used by various kinds of con-
tent providers such as Amazon [27], YouTube [7], and TikTok [18].
They make customized products or service recommendations to
consumers based on the assumption that users’ interests may be
derived from their prior activities or other users with similar pref-
erences.

Due to the dynamic nature of item features like popularity and
user preferences, it is critical for a model-based recommender sys-
tem (RS) to fit the newest user-item preferences. It is challenging to
apply real-time updates on the models in an online fashion due to
the increasing complexity of recommendation models [40]. There-
fore, it is more common to adopt an offline training strategy that
retrains a recommendation model with massive data to handle the
various user-item behaviour from a global perspective [35, 41]. Un-
like online models that directly update the parameters in real-time
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with new data, offline models often need to use a certain period
of data to train a new model from scratch to replace the outdated
historical models [40]. These historical models, which cost a lot of
computational resources andmanual feature engineering [4, 39], are
directly replaced by newly trained models to maintain the freshness
of the recommendation model. However, there is much valuable
information in historical models since massive of prior user-item
behaviours are used to train these models. These prior behaviours
can enrich the user’s behaviour information to improve the per-
formance of the recommendation model. Hence, in this paper, we
investigate an interesting but seldomly discussed problem, i.e., how
to reuse and transfer the valuable information that is included in
historical models for various downstream applications.

Knowledge Distillation (KD) is a pervasive way for knowledge
transfer [13], where the initialized model (student) is trained to
imitate the outputs of the pretrained model (teacher) and labeled
raw data. Through the additional supervision of the teacher model,
the student model can achieve comparable performance with the
teacher model in a shorter time [28]. However, KD still has several
limitations. First, real user-item interactions are necessary during
KD, which is very restrictive in practice. Second, the KD method
transfers knowledge indirectly and inflexibly since it should com-
pare the divergence of both outputs between the teacher and stu-
dent. Hence, we need a more persuasive and flexible way to extract
knowledge from the historical models.

To solve the challenge we mentioned above, we propose an in-
sightful model inversed data synthetic framework for recovering
informative training data information from the pretrained histori-
cal recommendation models and using it for knowledge transfer.
By fixing the parameters of the pretrained model and using back-
propagation to optimize the randomly initialized inputs continu-
ously (without any additional training data information), we can
successfully distill the training data information encoded in the
recommendation model’s parameters by our model inversed data
synthetic framework. However, the particularity of the recommen-
dation model and data makes the implementation of model inver-
sion have the following difficulties: (1) general recommendation
data are always mixed with the numerical and categorical features,
which are inappropriate as optimization objects. (2) The information
we distilled from a specific model should have cross-architecture
performance, i.e., inverted information can easily transfer to other
unseen RS models for training. (3) To recover the original training
set information from the pretrained model as much as possible, it
is imperative to ensure that the inversed information has enough
diversity. To address these issues, we design a new form of data,
which firstly transfers the non-derivable sparse and discrete rec-
ommendation data to dense and continuous data, while the new
form of data can directly transfer to different embedding-based
recommendation models. To fortify the diversity of the synthetic
data, we fix a section of vector in synthetic data not updating in the
process of optimization. An important observation about the deep
model in practice is that almost all of them use batch normalization
layer. Hence, we further improve the quality of the synthetic data
from the deep recommendation model by adding an additional reg-
ularization term that utilizes the running means and variances [14]
stored in the batch normalization layers. The experiment results
show that our framework can distill prosperous information from

prior training data that was used to train this model. At the same
time, our synthetic data can significantly reduce the amount of data
required to train a RS model.

In a nutshell, this work makes the following main contributions:

• We first adopt the standard linear regression to formally ex-
plain why model inversion can recover informative training
data knowledge with only the pretrained model. Then, We
introduce a general model inversed data synthesis frame-
work which can recover training data information from the
pretrained model without any real data.
• We propose a new form of data for our inverse-synthetic
data to be optimized in the pretrained model rather than
the one- or multi-hot data. It can successfully train a model
within significantly small inverse-synthetic data (2 orders
of magnitude). Further, we improve the synthetic data qual-
ity that inverses from the deep recommendation model by
adding an additional regularization term.
• We conduct extensive experiments on three different types
of CTR prediction models (from linear to deep) to validate
the effectiveness and efficiency of the inverse-synthetic data.
Moreover, we explore the application of knowledge transfer,
such as data-free knowledge distillation and model retrain-
ing. Our inverse-synthetic data shows highly competitive
with other state-of-the-art.

2 RELATEDWORK
Data-free knowledge transfer. To better leverage the potential
of well-trained models, knowledge transfer aims to distill valuable
knowledge from these pretrained models to an intra-domain or
cross-domain model [19]. Then, to overcome the barrier of large
datasets or privacy concerns, data-free knowledge transfer deals
with knowledge transfer via pseudo-data synthesis to train students
without using any real data [22]. This type of method has not
attracted much attention in recommendation systems. Yue et al.
[38] propose data-free model extraction to launch profile pollution
and poisoning attack over sequential recommendation models.

Model inversion was first proposed by [10], aiming to steal recog-
nizable images frommodels, especially when attackers lack training
data information. Subsequent works found that it can inverse train-
ing data information starting from random noise with additional
image prior [21] and statistical regularization [36] which highly
fulfill the data-free setting. However, model inversion has two short-
comings: (1) Although the inversed information as the auxiliary
prior has good performance in the downstream tasks, it cannot
train a model from scratch with only the inversed information [8].
(2) Inversion-based methods generate high sparse one- or multi-hot
data poorly since discrete user or item vector would block the gra-
dient flow, causing backpropagation training invalid. To the best of
our knowledge, we are the first paper that uses the model inversion
paradigm for data synthesis in the recommendation and overcomes
all the deficits mentioned above which further benefit the model
reuse.

Data Synthesis for recommendation. Data synthesis is an
influential data augmentation technology widely used in Computer
Version (CV) and Natural Language Processing (NLP) for solving
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privacy-preserving, class imbalance, model unrobustness, etc. How-
ever, synthesizing recommendation data is challenging due to its
high-dimensional and sparse properties. Generative Adversarial
Networks (GAN) have been wildly adapted in the recommenda-
tion field for data synthesis. It uses the generator to increase the
amount and diversity of data to alleviate the data sparsity problem
[2, 25, 30]. IRGAN [29] makes the first attempt by adopting a min-
imax game to unify the generative and discriminative models in
information retrieval. AugCF [30] uses GAN to directly generate
training data to reduce data sparsity. Meanwhile, there are some
GAN-based strategies for specific scenarios, such as synthetic data
for privacy-preserving [17], or in sequential prediction tasks [34].
In recommendation field, another correlative line of work is data
imputation technique [33] which aims to generate missing user-
item ratings in the rating matrix. The deficit of such a method is
that it is not end-to-end and requires extra manual work. One main
barrier of the above data synthesis methods to apply in practice is
that they assume the real data is available. However, this setting is
restrictive and unrealistic.

Click-Through Rate Prediction (CTR). Most existing ap-
proaches consider CTR prediction as binary classification problems.
The evolution of the CTR model [43] has experienced blooming
from classic machine learning such as LR, FM, to deep learning
such as DNN [6], Wide&Deep [5], DeepFM [11], DIN [42], etc. As
the classic machine learning model for CTR prediction, LR [32] is
still a widely used method due to its strong interpretability and en-
gineering requirements. However, the weak generalization ability
and feature interaction of linear models makes it easier to cause
the loss of training information. In order to solve the problem
that the LR model cannot perform feature interaction through suit-
able methods, Rendle et al. [26] proposed FM, which learns latent
vectors for each user and item. At the same time, it reduces the
complexity of straightforward computation of degree-2 polynomial
LR model from O(𝑛2) to O(𝑘𝑛) (𝑘 ∈ N+ is a hyperparameter that
defines the dimensionality of the factorization.). Since FM only
solves poly-2 feature interactions. To learn high-order feature in-
teractions. DeepFM was proposed [11], it uses the FM component
to capture poly-2 feature interactions and a feed-forward neural
network component for the higher feature interactions. This paper
studies these three classic CTR prediction models to evaluate our
model inversed data synthesis approach.

3 PRELIMINARIES
In this section, we formulate the recommendation task and perform
a formal analysis of model inversion. To discuss the problem of
reusing recommendation models. The recommendation task we
formulate thereafter is the CTR prediction model, which is a core
solution of advertising recommender systems.

3.1 Task Formulation
Suppose we have a CTR prediction task [15] with a user set 𝑈 =

{𝑢1, 𝑢2, ..., 𝑢𝑛} and an item set 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑚}, where 𝑛 (or𝑚)
is the number of users (or items). We denote the boldface u𝑖 (or
v𝑗 ) as the one-hot representation of user 𝑢𝑖 (or item 𝑣 𝑗 ). Let 𝑟 ∈ 𝑅
denotes the feedback given by a user to an item, while exhibited
events with and without click response are classified as positive

and negative instances. The collected user-item behaviour data 𝐷
can be denoted as a set of triplets (𝑢𝑖 , 𝑣 𝑗 , 𝑟 ) over the user-item-label
space𝑈 ×𝑉 × 𝑅 [3]. We denote ℓ (·, ·) as the loss function between
the prediction and ground-truth label. Formally, under a certain
dataset 𝐷 , the goal of CTR prediction is to learn the parameters of
the function 𝑓\ : 𝑈 × 𝐼 → 𝑅 to minimize the following objective
function:

min
\

𝐿(𝑢𝑖 , 𝑣 𝑗 , 𝑟 ) =
1
|𝐷 |

|𝐷 |∑︁
ℎ=1

ℓ (𝑓\ (𝑢𝑖 , 𝑣 𝑗 ), 𝑟 ) . (1)

Where 𝑓\ is denoted as a specific CTR model learned with parame-
ters \ . Typically, the categorical user/item features are mapped into
low-dimensional latent vectors through embedding techniques. We
denote E as the embedding matrix that learned in 𝑓\ on data 𝐷 .

E =
(
e𝑢1 . . . e

𝑢
𝑛, e𝑣1 . . . e

𝑣
𝑚

)𝑇
, (2)

e𝑢
𝑖
(or e𝑣

𝑗
) denotes the embedding vector of user𝑢𝑖 (or item 𝑣 𝑗 ). After

some epochs of training, the CTR prediction model can accept a
pair of user-item (𝑢𝑖 , 𝑣 𝑗 ) to make a prediction whether or not the
user 𝑢𝑖 is going to click on the recommended item 𝑣 𝑗 .

3.2 Motivation
Model inversion is a novel way to recover informative training
data with similar distribution to raw training data [9]. Take linear
regression as an example (Deep models have similar properties,
which have been proven in [36]), let 𝑓\ (𝑥) = \⊤𝑥 be the convergent
regression model under some training samples, where 𝑥 = (𝑢, 𝑣), \
is the least square solution of training samples, loss function ℓ = ℓ2
be the square loss. The model inversion optimization problem is
defined as:

𝑥∗ = argmin
𝑥

ℓ (\⊤𝑥, 𝑟 ) := (\⊤𝑥 − 𝑟 )2 . (3)

Instead of optimizing model parameters in training process, model
inversion updates the inputs 𝑥 iteratively to generate samples 𝑥∗
which minimize the loss under a random set label of 𝑟 . In Figure 1,
for linear regression problem, it is well known that the optimal so-
lution of Eq.(3) is a linear space with normal direction \ orthogonal
to it, i.e., 𝑃 = {𝑥 : \⊤𝑥 − 𝑟 = 0}. If we used gradient descent to opti-
mize Eq. (3), we could get the optimal solution 𝑥∗ to be the linear
projection of initialization 𝑥0 onto the linear space 𝑃 . Specifically,
we can update the sample 𝑥0 iteratively by

𝑥𝑘+1 = 𝑥𝑘 − [
𝜕ℓ

𝜕𝑥𝑘
, (4)

where the gradient can be calculated from Eq. (3) as:

𝜕ℓ

𝜕𝑥𝑘
= 2(\⊤𝑥𝑘 − 𝑟 )\ . (5)

From Eq. (5) we know that gradient descent moves towards the
linear solution space 𝑃 orthogonal in the direction \ . As moving
towards the plane 𝑃 , the gradient 𝜕ℓ

𝜕𝑥𝑘
becomes smaller and smaller,

until 𝑥∗ exactly lies on 𝑃 . Thus, model inversion can generate new
sample 𝑥∗ lies in the plane 𝑃 which training data determined. This
toy example motivates us to use model inversion as an synthesis
method to generate synthetic samples.



RecSys ’23, September 18–22, 2023, Singapore, Singapore Wang et al.

𝜽𝑻𝒙 −
𝒓 = 𝟎

𝜽

𝒙𝟎

𝒙∗

…

…

𝒙𝒌
𝒙𝒌"𝟏

Figure 1: Model inversion on the linear regression model. \
is the normal direction of 𝑃 , the updated sample approaches
𝑃 in the direction of \ .

4 MODEL INVERSED DATA SYNTHESIS
FRAMEWORK

Although the reutilization of historical data can enhance the dis-
tribution of users’ behaviour, thus improving the performance of
recommendation models, the inclusion of excessive historical data
alongside the latest data in training can significantly hamper real-
time recommendation. Therefore, it becomes imperative to strike
a balance between real-time deployment and performance. Fur-
thermore, conventional knowledge distillation (KD) methods fail
to adequately address the challenges posed by massive data man-
agement and privacy concerns. To overcome these challenges, we
propose a novel model inversed data synthesis framework that
extracts valuable knowledge from historical models without the
need for additional real data. Our preliminary experiments observe
that we can use a few inverse-synthetic data to efficiently train a
comparable model and boost the model retraining task with perfor-
mance improvement. The workflow of our framework is by fixing
the parameters in the pretrained model and using backpropaga-
tion to optimize the randomly initialized inputs continuously, as
illustrated in Figure 2.

As described in Section 3.2, when we specify the target label, the
initialized random input can be gradually moved to the distribution
of the raw training set by gradient descent. In the CTR prediction
task, the goal is to optimize the user u𝑖 ’s vector and item v𝑗 ’s vector
as follow:

(u𝑖 , v𝑗 ) = arg min
u𝑖 ,v𝑗

ℓ (𝑓\ (u𝑖 , v𝑗 ), 𝑟 ). (6)

However, the discrete one- or multi-hot recommendation data
would block the gradient flow, causing backpropagation training
invalid [30]. Hence, we reconstruct the data as continuous tensors
so that our input can get the back-propagated gradient. The form
of our new inverse-synthetic data can be recognized as:

𝝁 = (𝜔𝝁
1 , 𝜔

𝝁
2 , ..., 𝜔

𝝁
𝑛 ), 𝜔𝝁 ∼ U(0, 1),

𝝂 = (𝜔𝝂
1 , ..., 𝜔

𝝂
2 , ..., 𝜔

𝝂
𝑚), 𝜔𝝂 ∼ U(0, 1),

(7)

subject to:

𝑛∑︁
𝑖=1

𝜔
𝝁
𝑖
= 1,

𝑚∑︁
𝑗=1

𝜔𝝂
𝑗 = 1. (8)

Where 𝜔𝝁 and 𝜔𝝂 are sampled from the uniform distribution.
It can be seen that the one-hot represents of user vector u𝑖 and
item vector v𝑗 are the special case of our new form of inverse-
synthetic data (if and only if 𝑤𝝁

𝑖
= 𝑤 𝝂

𝑗
= 1 and 𝜔

𝝁
𝑖′ = 𝜔𝝂

𝑗 ′ = 0 for
any 𝑖

′
≠ 𝑖 and 𝑗

′
≠ 𝑗 ). Hence, given an indicated target label 𝑟 ∈ 𝑅,

a pretrained model 𝑓\ with derivable new data form can adapt our
model inversed data synthesis framework to find a user-item pair
of vector (𝝁∗,𝝂∗) to minimize the loss function ℓ , i.e.,

(𝝁∗,𝝂∗) = arg min
(𝝁,𝝂 )

ℓ (𝑓\ (𝝁,𝝂), 𝑟 ). (9)

The generated new samples can be interpreted as a prototype of real
data that is used to train the historical models. They are required
to preserve informative knowledge for training recommendation
models rather than interpretability for humans. The experiments
(Section 5.2, 5.3) show that the synthetic data generate from our
framework has valuable information to train a model from scratch
or help the downstream tasks.

4.1 Differences Between Raw Data Training and
inverse-synthetic Data Training

Assuming that we have a piece of raw data about user 𝑢𝑖 ’s prefer-
ence about item 𝑣 𝑗 , in the processing of training a model, the feature
embedding matrix of data (𝑢𝑖 , 𝑣 𝑗 ) will be obtained by following:

(u𝑖 , v𝑗 )E = (𝜔𝑢
𝑖 𝑒

𝑢
𝑖 , 𝜔

𝑣
𝑗 𝑒

𝑣
𝑗 ),
𝑠 .𝑡 .

𝜔𝑢
𝑖 = 𝜔𝑣

𝑗 = 1.
(10)

When obtaining the corresponding feature embedding matrix
(𝑒𝑢
𝑖
, 𝑒𝑣

𝑗
) ∈ 𝑅2×𝑘 , where 𝑘 is the predefined dimension of each em-

bedding vector. As the state-of-the-art deep CTR prediction model,
the Deep Factorization Machine (DeepFM) [11] will feed the fea-
ture embedding matrix (𝑒𝑢

𝑖
, 𝑒𝑣

𝑗
) into the wide component-FM and

deep component-neural network, enabling DeepFM to learn low-
and high-order feature interactions simultaneously from the input.
The DeepFM model will continually optimize this pair of feature
embedding vectors via gradient descent.

Feed-forward and back-propagation mechanism of the
new data format: Specifically, in the training process of feed-
forward, a piece of raw data will assign weight 1 to user 𝑢𝑖 and
item 𝑣 𝑗 ’s feature embedding vector. In contrast, a piece of inverse-
synthetic data is the strategy to assign weight to all feature embed-
ding vectors. Hence, in our inverse-synthetic data training scenario,
the case will be as follow:

(𝝁,𝝂)E = (𝜔𝝁
1 𝑒

𝑢
1 , 𝜔

𝝁
2 𝑒

𝑢
2 , ..., 𝜔

𝝁
𝑛 𝑒

𝑢
𝑛 , 𝜔

𝝂
1 𝑒

𝑣
1 , 𝜔

𝝂
2 𝑒

𝑣
2 , ..., 𝜔

𝝂
𝑚𝑒𝑣𝑚). (11)

With this operation, we obtain a feature embeddingmatrix (𝝁,𝝂)E ∈
𝑅 (𝑚+𝑛)×𝑘 . Such embedding matrix can not be directly adapted in
the following feed-forward process. In order to allow end-to-end
training, we aggregate the weighted embedding vectors according
to the user and item field as follows:

𝑎𝑔𝑔[(𝝁,𝝂)E] = (
𝑛∑︁
𝑖

𝜔
𝝁
𝑖
𝑒𝑢𝑖 ,

𝑚∑︁
𝑗

𝜔𝝂
𝑗 𝑒

𝑣
𝑗 ). (12)
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②
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\ellℓ(𝑓"(𝝁#, 𝝂$ , 𝑟))

Pretrained model (fixed)

𝑓!(𝝁", 𝝂#)

Model inversed data synthesis framework and its applications

…

Forward
Backward

… … …(𝝁%, 𝝂%, 𝑟)…

(𝝁#, 𝝂$ , 𝑟)

(𝝁∗, 𝝂∗, 𝑟)

\ellSynthetic data
(𝝁∗, 𝝂∗, 𝑟) training
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CTRModel
𝒇𝜽'(⋅)

(a). CTR model training

\ell
training

\ell
CTRModel
𝒇𝜽'(⋅)

(𝒖% , 𝒗&, 𝑟)
New raw data

Synthetic data
from historical
model

(𝝁∗, 𝝂∗, 𝑟)

(c). Model retraining

\ellSynthetic data

(𝝁∗, 𝝂∗, 𝑟)

(b). Data-free knowledge distillation

①

②
③

Teacher

Student

Loss

Figure 2: The model inversed data synthesis framework optimizes random noise into binary class synthetic data given just a
pretrained CTR model. It has following applications: (a) using the synthesized data, we enable directly training an CTR model
starting from scratch (Section 5.2); (b) Our inverse-synthetic data are applicable to data-free knowledge distillation (Section
5.3); (c) the inverse-synthetic data can improve the efficiency and performance in the model retraining scenario (Section 5.3).

After that, the dimension of the feature embedding matrix from
synthetic data is identical to a piece of raw data’s feature embed-
ding matrix. Finishing the feed-forward process, the synthetic user
vector 𝝁 and item 𝝂 vector can update parameter with gradient
descent as follow:

(𝜔𝝁
𝑖
)𝑡+1 = (𝜔𝝁

𝑖
)𝑡 − [∇ℓ (𝑓\ (𝝁,𝝂)𝑡 , 𝑦),

(𝜔𝝂
𝑗 )𝑡+1 = (𝜔

𝝂
𝑗 )𝑡 − [∇ℓ (𝑓\ (𝝁,𝝂)𝑡 , 𝑦).

(13)

Where 𝑡 denotes the 𝑡-th iteration, and [ is the learning rate of
synthetic data.

4.2 Diversity of The Inverse-synthetic Data with
Gradient Freezing

Aside from quality, diversity also plays a crucial role in avoiding
repeated and redundant synthetic data since the lack of diversity
can easily lead to model overfitting and low-performance issues [1].
To overcome such issues, various strategies, such as the min-max
training competition [29] and the truncation trick [1] have been
proposed. However, these methods, which rely on the joint training
of two networks over raw data, are consequently inapplicable to
our data-free case. So far, we have two tricks to guarantee the
diversity of synthetic data. One is that synthetic data is randomly
initialized from a uniform distribution, and another is that the
labels are randomly assigned to synthetic data. To further avoid
the repeated and redundant synthetic data, we add an additional
gradient freezing trick, i.e., we freeze the gradient of either the
synthetic vector of user ` or the synthetic vector of item a during

Algorithm 1:Model Inversed Data synthesis
input :Pretrained recommendation model 𝑓\ ; Training epochs

𝑇 ; Synthetic data size 𝑁 , Learning rate [, Binary cross
entropy ℓ , Softmax function 𝜎 (·); Loss threshold 𝜖 ;

output :𝑁 pieces of inverse-synthetic data (𝝁∗,𝝂∗, 𝑟 );
1 for 𝑒𝑝𝑜𝑐ℎ ← 0 to 𝑇 do
2 initialize one batch of user vectorsU0 and item vectors

V0 from random noise;
/* Normalize synthetic user and item vector

to fulfill the constraint of Eq.(8) */

3 foreach 𝝁0 ∈ U0 do 𝝁0 ← 𝜎 (𝝁0);
4 foreach 𝝂0 ∈ V0 do 𝝂0 ← 𝜎 (𝝂0);
5 initialize one batch of random label R;
6 while True do

/* Feed-forward with Eq.(12) */

7 R̂← 𝑓\ (U𝑘 ,V𝑘 );
8 𝑙𝑜𝑠𝑠𝑘 ← ℓ (R̂,R);
9 if 𝑙𝑜𝑠𝑠𝑘 ≥ 𝜖 then
10 (U𝑘+1,V𝑘+1) ← (U𝑘 ,V𝑘 ) − [ ( 𝜕𝑙𝑜𝑠𝑠𝑘

𝜕U𝑘 ,
𝜕𝑙𝑜𝑠𝑠𝑘
𝜕V𝑘 );

11 else
12 (U∗,V∗) ← (U𝑘 ,V𝑘 );
13 break;
14 end
15 end
16 end
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the training process. Therefore, the optimization problem of inverse-
synthetic data is changed to the following:

(𝝂∗ |𝝁, 𝑟 ) = argmin
𝝂

ℓ (𝑓\ (𝝁,𝝂), 𝑟 )

𝑜𝑟

(𝝁∗ |𝝂, 𝑟 ) = argmin
𝝁

ℓ (𝑓\ (𝝁,𝝂), 𝑟 ) .
(14)

After that, the synthetic data will optimize under the condition
of both gradient freezing vector and randomly assigned label. The
intrinsic behind the gradient freezing trick to enhance diversity is
that the freezing vector will constrain the direction of parameter
update of the unfrozen vector. It is because the freezing vector is
randomly initialized, and it will generate a unique feature embed-
ding matrix when it feed-forward in the CTR model. Then, the
feature embedding matrix obtained from the unfrozen vector will
combine the freezing embedding matrix to the following compu-
tation. When back-propagation updating, the unfrozen synthetic
vector will be constrained under this freezing embedding matrix
and randomly assigned label. We detailedly discuss the gradient
freezing trick in Section 5.5.

4.3 Batch Norm Statics for Deep Model
We extend a new feature distribution regularization term to further
improve the quality of our inverse-synthetic data. We strive to
reduce the difference of feature map statistics w.r.t embedding (`, a)
and (𝑢, 𝑣). In order to successfully enforce the similarity of feature
statistics at all multi-layer perceptron (MLP) layers utilized in deep
recommendation models. We assume that feature statistics follow
the Gaussian distribution across batches of data and can be defined
by mean 𝛿 and variance 𝜎2. The feature distribution regularization
term can therefore be written as follows:

𝑅𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 =
∑︁
𝑙

| |𝛿𝑙 (`, a) − E(𝛿𝑙 (𝑢, 𝑣) | (𝑈 ,𝑉 ) | |+∑︁
𝑙

| |𝜎2
𝑙
(`, a) − E(𝜎2

𝑙
(𝑢, 𝑣) | (𝑈 ,𝑉 )) | |.

(15)

Where 𝛿𝑙 (`, a) and 𝜎2𝑙 (`, a) denote as the batch-wise mean and
variance to that of 𝑙𝑡ℎ MLP layer. We denote E(·) and | | · | | operators
as the expected value and ℓ2 norm calculations. It might seem we
needmean and variance of original data to obtainE(𝛿𝑙 (𝑢, 𝑣) | (𝑈 ,𝑉 ))
and E(𝜎2

𝑙
(𝑢, 𝑣) | (𝑈 ,𝑉 )). Fortunately, the running average statistics

stored in the widely-used BatchNorm (BN) layers are more than
sufficient. BN as the key tool to alleviate covariate shifts [14] during
training are implicitly capture the running mean and variance.
Hence, the mean and variance of batches of data can be represented
as follow:

E(𝛿𝑙 (𝑢, 𝑣) | (𝑈 ,𝑉 )) ≃ 𝐵𝑁𝑙 (𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑚𝑒𝑎𝑛),
E(𝜎2

𝑙
(𝑢, 𝑣) | (𝑈 ,𝑉 )) ≃ 𝐵𝑁𝑙 (𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) .

(16)

This regularization term customized for the deep CTR model can
effectively help improve the quality of inverse-synthetic data gen-
eration and the performance of downstream tasks such as data-free
knowledge distillation and model retraining. With the additional
feature distribution regularization term, the recommendation data

Table 1: Statistics of the datasets.

Dataset user item Interactions
Yahoo! R3 uniform 5,400 1,000 54,000
Yahoo! R3 selected 15,400 1,000 311,704
MovieLens1M 6,040 3,952 1,000,209

is synthesized by optimizing the following term:

(𝝁∗,𝝂∗) = arg min
(𝝁,𝝂 )

ℓ (𝑓\ (𝝁,𝝂), 𝑟 ) + 𝛼 𝑓 𝑅𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 . (17)

Where 𝛼 𝑓 is a hyperparameter.

4.4 Model Inversed Data Synthesis Algorithm
For model inversed data synthesis, we adopt mini-batch training in
our implementation. Specifically, in each epoch, we first initialize a
batch of user-item feature embedding vector pairs (U0,V0) from
the random noise, then we generate the same amount indicated
binary-class labels. Keeping the proportion of negative labels higher
than positive labels is better because user preferences for positive
and negative behaviors are naturally imbalanced. Each user vector
𝝁0 and item vector 𝝂0 should go through a softmax function [24], to
normalize the sum of the weights of each vector, which can further
help the inverse-synthetic data converge to satisfactory loss values
faster. We use the pretrained CTR model parameters to update the
inverse-synthetic data using gradient descent gradually. We stop
training when the loss is smaller than an arbitrarily specified loss
threshold 𝑏. The pseudo-code for the entire model inversed data
synthesis is given in Algorithm 1.

5 EXPERIMENTS
We conduct experiments in this section to evaluate the perfor-
mance of our proposed model inversed data synthetic method. The
majority of our experiments will focus on the following research
questions: RQ1: Compared with other data synthesis SoTA, how
is the quality of the inverse-synthetic data generated from our
framework? RQ2: Compared with other data-free knowledge trans-
fer SoTA in the scenario of data-free knowledge distillation, how
effective of our framework can distill informative training informa-
tion from pretrained model? RQ3: How is the performance of the
inverse-synthetic data compared with other sample-based model
retraining methods?

5.1 Experimental Setup
To evaluate the generalization and efficiency of the model inverse-
based data synthetic method from different perspectives, our ex-
periments compare with different state-of-the-art methods under
varying scenarios on two public datasets.

5.1.1 Datasets. We evaluate our approach with the following two
datasets, and the statistics are shown in Table 1.

Yahoo! R3 [20]: This dataset is provided by Yahoo! music rec-
ommendation service. We follow [37] to divide this dataset into two
parts according to Yahoo!’s different collection strategies. Hereafter,
these two parts are named as Yahoo uniform dataset and Yahoo
selected dataset. The uniform dataset is carried out by 5400 sur-
vey participants who rate 1000 randomly selected songs during an
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Table 2: The AUC scores and LogLoss of our inverse-synthetic data compare with other generative models on Yahoo R3 and
Movielens. Boldface denotes the best result, underline is secondary.

Yahoo R3! uniform Yahoo R3! selected Movielens
LR FM DeepFM LR FM DeepFM LR FM DeepFM

AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss
raw data (full) 0.7512 0.3906 0.7544 0.3891 0.7561 0.3839 0.8218 0.4907 0.8231 0.4902 0.8321 0.5314 0.7935 0.538 0.8063 0.525 0.8156 0.5148
raw data (10K) 0.6424 0.5948 0.6401 0.8753 0.6328 0.7823 0.6731 0.7269 0.6637 0.7374 0.6595 0.8227 0.6636 0.7621 0.6458 0.7935 0.6524 0.9382
IRGAN (10K) 0.6475 0.5996 0.6479 0.8188 0.6403 0.7746 0.6888 0.7182 0.6715 0.7284 0.6753 0.8123 0.6652 0.7502 0.6519 0.7894 0.6556 0.9371
AugCF (10K) 0.6487 0.5961 0.6493 0.8152 0.6411 0.7721 0.6894 0.7175 0.6745 0.7261 0.6773 0.8105 0.6673 0.7493 0.6544 0.7826 0.6577 0.9307
LRSD (2K) 0.7442 0.4608 0.7093 0.4849 0.6884 0.6025 0.8128 0.5117 0.8107 0.5751 0.7934 0.6301 0.7442 0.5868 0.7435 0.5864 0.6912 0.7093
FMSD (2K) 0.6998 0.5472 0.7265 0.3875 0.6886 0.6012 0.7917 0.5571 0.7967 0.5569 0.7944 0.6088 0.7138 0.7799 0.7293 0.6075 0.6706 0.7338

DeepFMSD (2K) 0.7427 0.4944 0.6916 0.6752 0.6895 0.5993 0.8117 0.5359 0.7957 0.6421 0.7968 0.6641 0.7149 0.6513 0.7207 0.6193 0.6889 0.7376
DeepFMSD-BN (2K) 0.7461 0.4702 0.6988 0.6546 0.6919 0.5938 0.8135 0.5241 0.7965 0.6351 0.8008 0.6226 0.7224 0.7752 0.7619 0.5806 0.7367 0.6396

Table 3: The AUC scores and LogLoss of our inverse-synthetic data compare with DFME in the scenario of data-free knowledge
distillation on Yahoo R3 and Movielens.

DFME (10K) Ours (2K)
LRME FMME DeepFMME LRSD FMSD DeepFMSD DeepFM-BN
AUC/LL AUC/LL AUC/LL AUC/LL AUC/LL AUC/LL AUC/LL

YahooR3 uniform 0.6863/0.7678 0.6777/0.6525 0.6836/0.6487 0.6893/0.5736 0.6923/0.5674 0.6937/0.5522 0.7091/0.5391
YahooR3 selected 0.7515/0.8142 0.7173/0.7659 0.7371/0.7451 0.7945/0.6123 0.7952/0.6101 0.7953/0.6057 0.7989/0.6035

Movielens 0.7191/0.8391 0.6688/0.6915 0.6981/0.6811 0.7424/0.5878 0.7204/0.6092 0.7192/0.6106 0.7499/0.5989

online survey. Each participant was instructed to rate at least ten
songs chosen at random by the system from the 1000 selected songs.
The selected dataset is conducted by 10,000 non-survey participants
who choose and rate the 1,000 songs according to their own wishes.
The reason for dividing the Yahoo! R3 dataset is to verify that our
proposed method can decouple the potential training data from the
model trained with uniform data or selected data.

MovieLens [12]: Movielens consists of users’ tagging records
on movies. We focus on personalized tag recommendation by con-
verting each tagging record (user ID, movie ID, rating) to a feature
vector as input.

We formalize the task as a regression problem, in which all
ratings for 1-3 are normalized to be 0, 4-5 ratings to be 1. The ratio
of train, test, and validation set sizes is 8:1:1.

5.1.2 Evaluation metrics. We adopt two metrics for performance
evaluation of CTR prediction tasks: AUC (Area Under the ROC
curve) and Logloss (cross-entropy). The higher AUC scores or the
lower Logloss represents the better performance of the CTR predic-
tion model.

5.1.3 Baselines. To evaluate the generalization of our framework,
we implement it on three different types of CTR prediction mod-
els (from linear to deep model). (1) Logistic Regression (LR) [23]
is a popular linear recommendation model; (2) Factorization Ma-
chine (FM) [26] is the combination of linear regression and matrix
factorization; (3) Deep Factorization Machine (DeepFM) [11] is a
well-known deep model which consists of wide component-FM and
deep component-neural network.

SoTA for RQ1: Our framework can be realized as a generative
model that can synthesize new data from a pretrained model. Hence,
we first compare our framework with other data synthesis methods.
• IRGAN [29]: It is a classic min-max Generative Adversarial
Network (GAN) for information retrieval, and we use the

converged generative model that is trained on the whole raw
data to synthesize new data.
• AugCF [30]: It is based on a Conditional Generative Ad-
versarial Net that is trained on whole raw data to augment
reliable user interaction.

SoTA for RQ2: Our framework can extract informative infor-
mation from a pretraind model for knowledge transfer without
any raw data. Hence, we compare our method with other data-free
model extraction methods in the application of data-free knowledge
distillation.

• Data-free model extraction (DFME) [38]: It adopts the
data-free model extraction to launch a Black-Box attack on
sequential recommenders. It contains two modules, one is
the model extraction module, and another is the downstream
attacks module. The model extraction module synthesizes
informative data via API queries. Then, use model distillation
to minimize the difference between the victim and surrogate
model by training with generated data. We select the data-
free model extraction module as the SoTA and abbreviate it
as DFME.

SoTA for RQ3: Our framework can reuse historical models by gen-
erating synthetic data as a memorization of historical user interest.
Hence, following [40], we compare our synthetic data with other
representative sample selection methods as the replay of historical
user interest in the application of model retraining.

• Random: It randomly sample data instance from historical
data as the replay for the retraining model.
• Fine-tune: This method updates the CTR model with newly
collected data.
• SPMF [31]: This is a state-of-the-art streaming recommen-
dation method that belongs to the category of sample-based
retraining.
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5.1.4 Implementation Details. In this part, we briefly introduce the
types of our generated data, parameters setting.

The types of inverse-synthetic data:We have four types of
synthetic data, which are inversed from the pretrained LR, FM,
DeepFM, and DeepFM with BN loss respectively. The synthetic
data we inversed from the LR model will be abbreviated as LRSD.
Similarly, we also have FMSD and DeepFMSD, and the BN loss used
in DeepFM is abbreviated as DeepFMSD-BN.

Parameters setting:We implement all algorithms in PyTorch
and train on a single NVIDIAQuadro RTX5000 (16GBmemory). The
overall experiments are of two stages. (1) data synthetic: Adopting
our framework to synthetic data from a pretrained model. (2)model
training: Adopting the synthetic data to train models over different
downstream tasks. In the first stage, the pretrained models (LR,
FM, DeepFM) are trained with Binary Cross Entropy (BCE) loss
and Adam optimizer (learning rate 0.01). Then, we use Adam (a
grid search of learning rate [1𝑒 − 4, 1𝑒 − 5, 1𝑒 − 6] and weight decay
[0.1, 0.05, 0.001, 0.005]) for optimization the synthetic data. While
synthetic data from deep model with BN loss in Eq.(17), the 𝛼 𝑓 =

[0.1, 0.05, 0.01] for the BN loss term. In the second stage, we use
Adam optimizer (a grid search of learning rate [0.1, 0.01, 0.001]
and weight decay [1𝑒 − 5, 1𝑒 − 6, 1𝑒 − 7]) for training different type
of synthetic data. While in the data-free knowledge distillation
scenario, the temperature 𝜏 = [2, 3, 4].

5.2 Performance Comparison with Data
Synthesis SoTA (RQ1)

Table 2 is the comparison of data that from data synthetic SoTAs
and our framework with metrics of AUC scores and LogLoss. In
order to make the results as fair as possible, we generate 5x data
size from SoTAs (10K) than ours (2K) since the form of our synthetic
data is continuous and dense. "raw data (full)" in the table indicates
model training on the whole raw training set, which serves as an
approximate upper-bound performance. As shown in Table 2, our
methods perform better than all the compared data synthetic SoTAs.
More specifically, we have the following observations: (1) From the
row perspective, when we directly train the model with inverse-
synthetic data, the results show that different inverse-synthetic data
have distinct advantages, i.e., LRSD is better at training LR and FM
models, and FMSD and DeepFMSD with/without BN loss are more
advantageous for training their original models. (2) The ablation
study of BN loss (DeepFMSD vs. DeepFMSD-BN) shows when we
generate synthetic data from DeepFM model implemented with BN
loss has better AUC scores when training all types of models. (3)
Our framework has a remarkable cross-architecture performance
that the synthetic data from a model can be adapted to train other
models successfully. (4) The trends of AUC and LogLoss metrics
may be inconsistent. For example, some of our strategies have a
better AUC value but a poor LogLoss value. Since the LogLoss value
is susceptible to the difference in label distribution between the
training and test sets, we mainly consider AUC as in [16].

The best training performance of synthetic data on different
datasets has an absolute 0.7%-7.89% gap compared with full raw
data training. Note that such a result is the amount of raw data has
over 120x and 400x than our inverse-synthetic data on the Yahoo
R3 selected and Movielens.

Table 4: The AUC scores and LogLoss of synthetic data com-
parewith the representative sample selection SoTAs inmodel
retraining scenario.

Training Data LR FM DeepFM
AUC/LL AUC/LL AUC/LL

𝑅𝑎𝑛𝑑𝑜𝑚𝑇 1 ∪ 𝑟𝑎𝑤𝑇 2 0.7775/0.5661 0.7802/0.5723 0.7768/0.5758
Fine-tune 0.7835/0.5566 0.7847/0.5618 0.7850/0.5603

𝑆𝑃𝑀𝐹𝑇 1 ∪ 𝑟𝑎𝑤𝑇 2 0.7885/0.5562 0.7868/0.5613 0.7878/0.5601
𝐿𝑅𝑆𝐷𝑇 1 ∪ 𝑟𝑎𝑤𝑇 2 0.7950/0.5480 0.7882/0.5737 0.7921/0.5538
𝐹𝑀𝑆𝐷𝑇 1 ∪ 𝑟𝑎𝑤𝑇 2 0.7941/0.5478 0.7906/0.5694 0.7915/0.5547

𝐷𝑒𝑒𝑝𝐹𝑀𝑆𝐷𝑇 1 ∪ 𝑟𝑎𝑤𝑇 2 0.7926/0.5485 0.78810.5749 0.7912/0.5572
𝐷𝑒𝑒𝑝𝐹𝑀𝑆𝐷-𝐵𝑁𝑇 1 ∪ 𝑟𝑎𝑤𝑇 2 0.7947/0.5486 0.7897/0.5719 0.7933/0.5588

Table 5: Ablation study on with/without gradient freezing
for enhancing the diversity of inverse-synthetic data.

YahooR3 uniform YahooR3 selected Movielens
AUC/LL AUC/LL AUC/LL

without gradient freezing 0.6587/0.6998 0.6468/0.4627 0.6901/0.6456
with gradient freezing 0.6919/0.5938 0.8008/0.6226 0.7367/0.6396

With Gradient Freezing Without Gradient Freezing

Figure 3: t-SNE visualization of synthetic data with/without
gradient freezing.

5.3 Application: Data-free Knowledge
Distillation (RQ2)

In this section, we demonstrate the applicability of our proposed
method to the data-free knowledge transfer scenario.

Data-free knowledge transfer aims at distilling information from
a pretrained teacher model to a student model without using any
raw data, which is a more realistic setting in practice. On the one
hand, data is a valuable asset and core competitiveness for a com-
mercial company. On the other hand, the privacy of user interest is
another primary concern. In this experiment, we apply our frame-
work to synthesize LRSD, FMSD, DeepFMSD, and DeepFM-BN from
the models trained on Yahoo R3! and Movielens, respectively. Then,
the compared method DFME is with the same operation to syn-
thesize data. We name the synthetic data from LR as LRME over
the method of DFME. Similarly, we have FMME and DeepFMME.
We use the synthetic data from our framework and DFME to train
student DeepFM models with knowledge distillation separately.

Table 3 shows that inverse-synthetic data performs better than
data from DFME. It successfully trains a comparable CTR prediction
model by knowledge distillation without any help from raw training
data. While the inverse-synthetic data generated from the DeepFM
model implemented with BN loss further improved AUC scores by
0.36%-3.07% than DeepFMSD.
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Figure 4: The performance of our framework scale with varying synthetic data size vs. randomly sampled data on Yahoo R3!’s
uniform data.

5.4 Application: model retraining (RQ3)
Time sensitivity is critical for CTR prediction to operate well in a
real-world environment. Hence, it is necessary for model retraining
with the latest user-item interaction. In practice, selecting some
representative samples from historical data to incorporate with
the latest user-item interaction for model retraining can further
benefit the retraining model with a more global perspective of
user preference. Instead of directly using historical raw data, our
framework can generate informative synthetic data from historical
models, which can be realized as the memorization of historical user
interest. We compare our method with other core sample selection
methods with data size 10K than ours 2K. To simulate a real-world
scenario such that a CTR prediction model always uses recorded
data to predict future user preferences. we split the MovieLens into
three different time windows according to the timestamp. Following
[40], the data from time window one is adopted as historical data,
time window two is the latest user behaviour directly used for
training, and the data from time window three is the test set for
simulating the future preferences of users. For example, we denote
the synthetic data inversed from the historical LR model in time
window one as 𝐿𝑅𝑆𝐷𝑇 1. 𝑟𝑎𝑤𝑇 2 is the whole training set on time
window two. All results in Table 4 are obtained with testing on
𝑟𝑎𝑤𝑇 3.

In Table 4, the overall quality of our synthetic data is better than
the representative sample selection SoTAs in the model retraining
scenario. It shows the new data format can perform well when
directly combined with raw data. Therefore, in the model retrain-
ing scenario, our framework utilizes the potential of the historical
model to synthesize data. These synthetic data can be realized as
the memorization of historical data. Not only do we reuse the out-
of-date models, but we also protect the privacy of historical user
interests.

5.5 Ablation Study
Gradient Freezing. We conduct an ablation study to explore
whether the gradient freezing trick for increasing the data diver-
sity is desired to be introduced. Table 5 shows the performance
of the ablated model where the gradient freezing trick is removed
compared with unremoved. From this table, we can conclude that
the performance is significantly dropped without gradient freezing.
To more specifically discuss the benefit of the gradient freezing
trick, we adopt t-SNE to visualize the distribution of synthetic
data with/without the gradient freezing trick. As shown in Figure
3, when synthesize data with gradient freezing, the distribution

of data is highly dispersed and evenly distributed than without
gradient freezing trick.

Scaling with Different Data Size. To validate the availability
of inverse-synthetic data when scale with different data size, we
employ off-the-shelf pretrained LR, FM, and DeepFM models to
generate several forms of inverse-synthetic data, i.e., LRSD, FMSD,
DeepFMSD, DeepFMSD-BN and then use these data to train the
LR, FM, and DeepFM from scratch. For instance, using LRSD as
the training data for training initial LR is denoted by LR (LRSD).
Each results are obtained by ten times running. We compare the
models’ AUC scores trained by inverse-synthetic data with the
model trained by the same amount of raw data randomly sampled
from the training set of the Yahoo uniform dataset. Across all the
cases in Figure 4, the AUC scores of inverse-synthetic data training
are better than the directly raw data training. Even the performance
with one hundred pieces of inverse-synthetic is still outperformed
six thousand pieces of raw data. When the number of inverse-
synthetic data exceeds two thousand, the improvement of the AUC
scores through synthetic data training is bogged down, and even
in some cases, AUC starts to drop slightly. It is because an excess
of data will add redundant information to that inverse-synthetic
dataset, decreasing model performance.

6 CONCLUSION
In this paper, we are the first to attempt model inversion to achieve
data synthesis via a pretrained model on the recommendation field.
We propose a universal model inversed data synthesis framework
that can be well-performed in different classic CTR models. The
inverse-synthetic data has the following characteristics: (1) It can
recover training data information used to train a model. (2) Our
synthetic data shows effectiveness and efficiency in the knowledge
transfer scenarios.

In the future, we are interested in exploring the new data for-
mat from the privacy-preserving perspective. The new data format
offers a promising solution for discrete data like graphs, and senti-
ment. At the same time, the data-free property of our framework
has the potential in some other applications, such as data-free quan-
tization and pruning for model compression and data-free model
attack.
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