Multimodal Generation for Recommendation

Rui Zhang

www.ruizhang.info

Multimodal Generation

midjourney

https://www.midjourney.com/

Sora

https://openai.com/index/sora/

Can we make them personal?

Table of Contents

- **(PMG (Personalized Multimodal Generation)**
 - PMG for Recommendation: multimodal → image with LLM
 - PMG for Preference Questions: multimodal → multimodal with Vision-Language Model

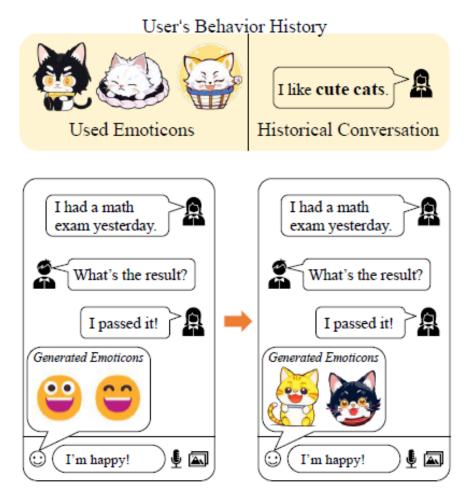
■ Personalized Generation

- \bullet Personalized Generation: text \rightarrow text without LLM
- ullet Personalized Generation: item \rightarrow text without LLM
- \bullet Personalized Generation: text \rightarrow text with LLM
- Personalized Generation: text → text with LLM & Human
- (non-Personalized) Multimodal Generation: multimodal → multimodal
- Other Tasks of Multimodal Generation for Recommendation
- What's Next?

Term: LLM – language models with capabilities similar to chatgpt, such as llama, claude, gemini, etc

- Multimodal Pretraining and Generation for Recommendation: A Tutorial, Web Conference 2024
- Multimodal Pretraining, Adaptation, and Generation for Recommendation: A Survey, arXiv:2404.00621

- **PMG: Personalized Multimodal Generation with LLM**
 - Converts user behaviors (conversations, clicks, etc) into natural language
 - Extract user preference descriptions, both hard and soft preference embeddings
 - Preference conditioned multimodal generation
 - Improves 8% in terms of personalization measure

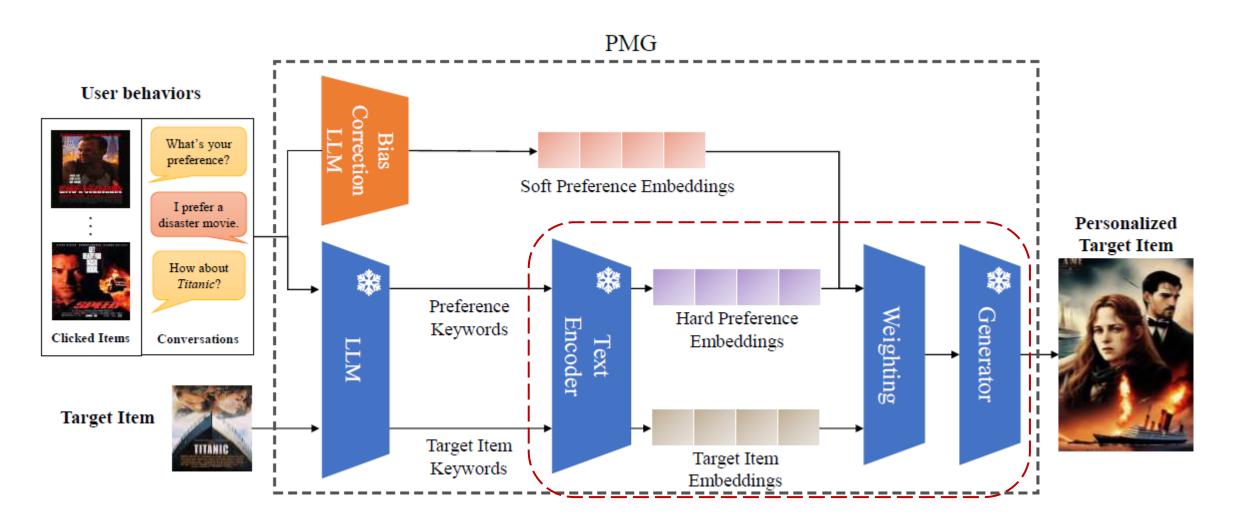


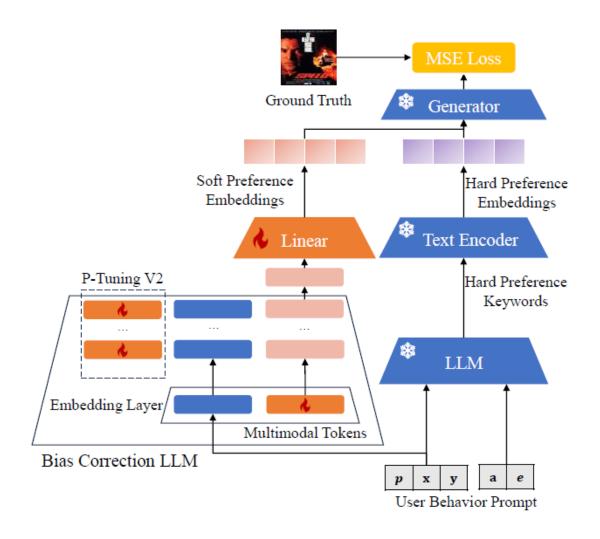
Without Personalization

With Personalization

PMG: Personalized Multimodal Generation with Large Language Models, The Web Conference 2024

Friday 17 May 2024: 2:30 - 4pm Poster Session





$$\mathbf{E}^{p} = concatenate(\mathbf{E}_{m}, \mathbf{E}_{k})$$

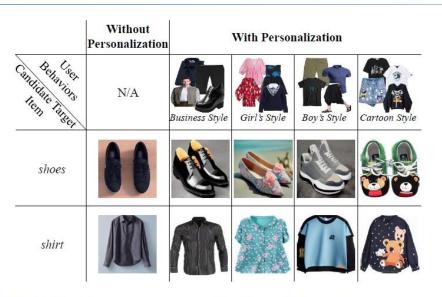
$$M_{n} = M_{s} + \epsilon,$$

$$M_{d} = Unet(\mathbf{E}^{p}, M_{n}).$$

The loss is calculated as MSE loss of M_s and M_d :

$$loss = MSE(M_s, M_d).$$

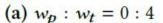
Figure 3: Model designed to train soft preference embeddings.



$$\begin{split} d_{p} &= \frac{e_{M} \cdot e_{p}}{\|e_{M}\|_{2} \|e_{p}\|_{2}}, \\ d_{t} &= \frac{e_{M} \cdot e_{t}}{\|e_{M}\|_{2} \|e_{t}\|_{2}}. \end{split}$$

Finally, our objective is to optimize the weighted sum of d_p and d_t .

$$z = \alpha \cdot \log d_p + (1 - \alpha) \cdot \log d_t.$$



(b) $w_p : w_t = 1:3$

(c) $w_p : w_t = 2 : 2$

(d) $w_p : w_t = 3 : 1$

(e) $w_p : w_t = 4 : 0$

Figure 7: Generated poster of movie *Titanic* with different weights of conditions, w_p is the weight of preference conditions, which prefer disaster movie. w_t is the weight of target item conditions, which consider it as a romantic movie. When $w_p: w_t = 1:3$ it achieves the highest z score and the generated poster is a combination of romance and disaster.

■ Data

- 1) Generating personalized images of products whose original images are missing according to the historically clicked products of the user. POG dataset, a multimodal dataset of fashion clothes. We selected 2,000 users and 16,100 items for experiments.
- 2) Generating personalized posters of movies according to historical watched movies of user. MovieLens Latest Datasets, 9,000 movies, 600 users, and 100,000 rating interactions.
- 3) Generating emoticons in instant messaging according to current conversation and historically used emoticons of the user. We do not train soft preference embeddings and only use keywords to generate images.

	Movie Posters Scenario	Clothes Scenario
PMG	2.587	2.001
Textual Inversion	1.952	1.725
No personalization	1.462	1.495

Human evaluation score, range (1, 2, 3)

PMG for Preference Questions: multimodal → multimodal w/ V-LM

■ Multi-task Multimodal generation, answering different types of questions

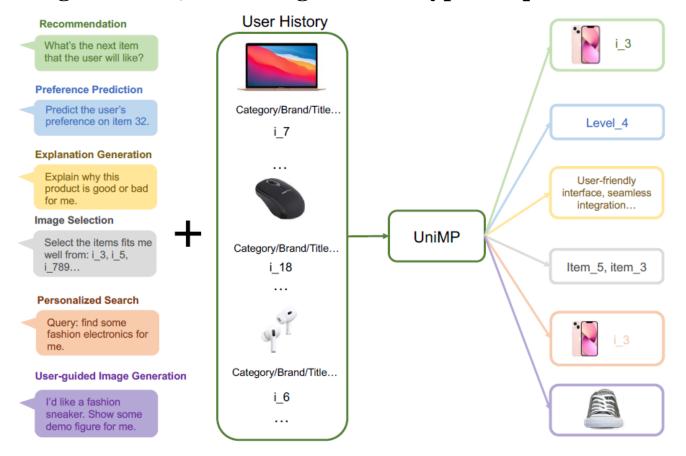


Figure 2: Through multi-task, multi-modal instruction tuning, the model can adapt to a range of user requirements. By altering the instructions, it can generate diverse responses to suit user needs. For

PMG for Preference Questions: multimodal → multimodal w/ V-LM

■ Item contextual data is serialized and processed through fine-grained cross-modal fusion

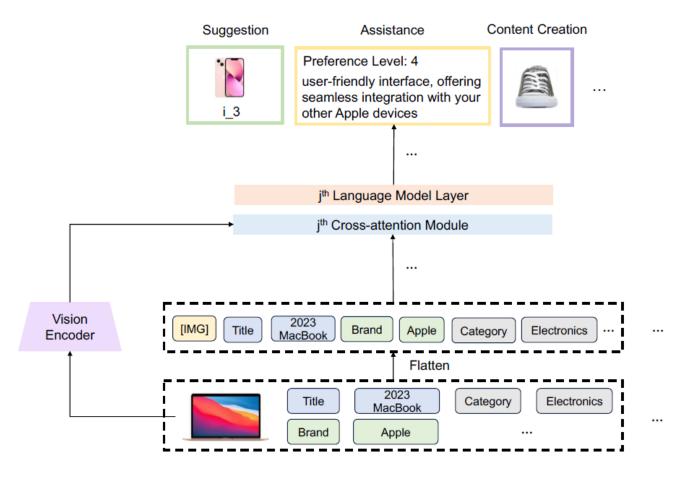


Figure 1: Our proposed UniMP framework operates as follows: Item contextual data is streamlined into a user sequence, which is then processed through fine-grained cross-modal fusion. Depending on the instructions, the output is tailored to produce diverse response types.

Table of Contents

- **PMG (Personalized Multimodal Generation)**
 - PMG for Recommendation: multimodal → image with LLM
 - PMG for Preference Questions: multimodal → multimodal with Vision-Language Model

■ Personalized Generation

- Personalized Generation: text → text without LLM
- ullet Personalized Generation: item \rightarrow text without LLM
- Personalized Generation: text → text with LLM
- Personalized Generation: text → text with LLM & Human
- (non-Personalized) Multimodal Generation: multimodal → multimodal
- **■** Other Tasks of Multimodal Generation for Recommendation
- **■** What's Next?

Term: LLM – language models with capabilities similar to chatgpt, such as llama, claude, gemini, etc

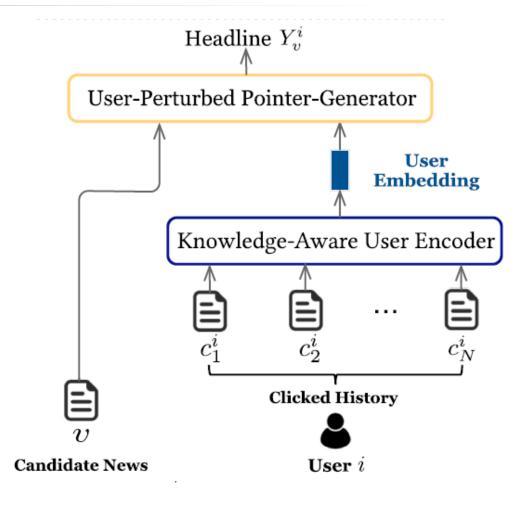
- Multimodal Pretraining and Generation for Recommendation: A Tutorial, Web Conference 2024
- Multimodal Pretraining, Adaptation, and Generation for Recommendation: A Survey, arXiv:2404.00621

Personalized Generation: text → **text** w/o LLM

■ News Headline Generation

Put Your Voice on Stage: Personalized Headline Generation for News Articles, TKDD 2023

- Framework
- Evaluation
 - **♦** Automtaic
 - ☐ Informativeness: F1 ROUGE
 - ☐ Fluency: longest common subsequence (ROUGE-L)
 - ◆ Human evaluation

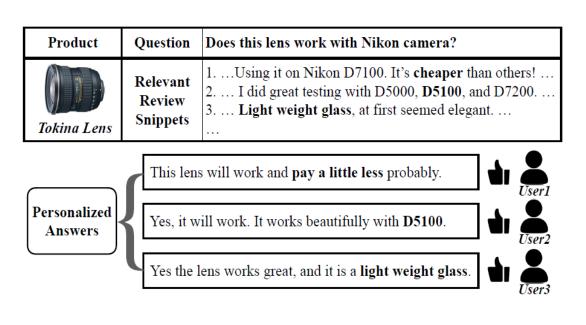


Framework

Put Your Voice on Stage: Personalized Headline Generation for News Articles, TKDD 2023

Personalized Generation: item → **text w/o LLM**

■ Personalized Answer Generation in E-commerce



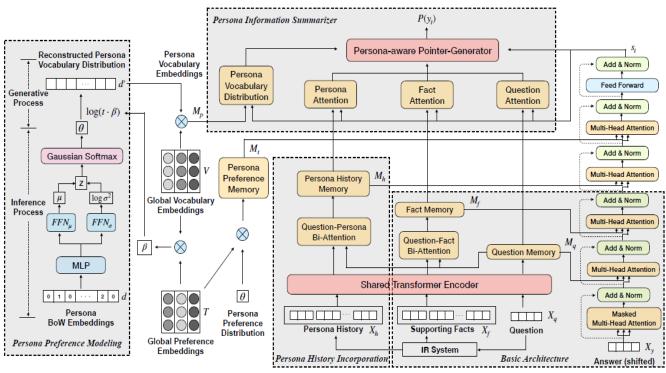


Fig. 3. Overview of the proposed method PAGE, including four components: (1) Basic Encoder-decoder Architecture, (2) Persona History Incorporation, (3) Persona Preference Modeling, and (4) Persona Information Summarizer.

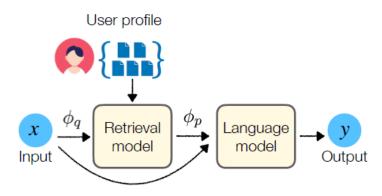
Towards Personalized Answer Generation in E-Commerce via Multi-Perspective Preference Modeling, TOIS 2022

Personalized Generation: text → text w/ LLM

■ Benchmark, RAG (Retrieval Augmented Generation) paradigm

LaMP: When Large Language Models Meet Personalization, arXiv:2304.11406

- 7 Tasks
- Personalized Text Classification
 - (1) Personalized Citation Identification
 - (2) Personalized Movie Tagging
 - (3) Personalized Product Rating
- Personalized Text Generation
 - (4) Personalized News Headline Generation
 - (5) Personalized Scholarly Title Generation
 - (6) Personalized Email Subject Generation
 - (7) Personalized Tweet Paraphrasing
- Using RAG paradigm



Personalized Generation: text → **text** w/ LLM & Human

- LLM-assisted news headline generation
 - Human-AI Text Co-Creation

Harnessing the Power of LLMs: Evaluating Human-AI Text Co-Creation through the Lens of News Headline Generation, EMNLP 2023

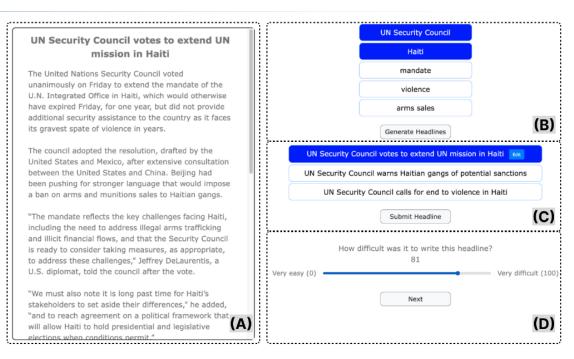


Figure 2: Interface for human-AI news headline cocreation for *guidance* + *selection* + *post-editing* condition: (A) news reading panel, (B) perspectives (keywords) selection panel (multiple keywords can be selected), (C) headline selection panel with post-editing capability, and (D) difficulty rating slider. Note: (B), (C) and (D) are hidden from the user until the requisite step is finished (e.g., the user does not see the difficulty

(non-Personalized) Multimodal Generation: multimodal → multimodal

■ Multi-modal News Headline Generation

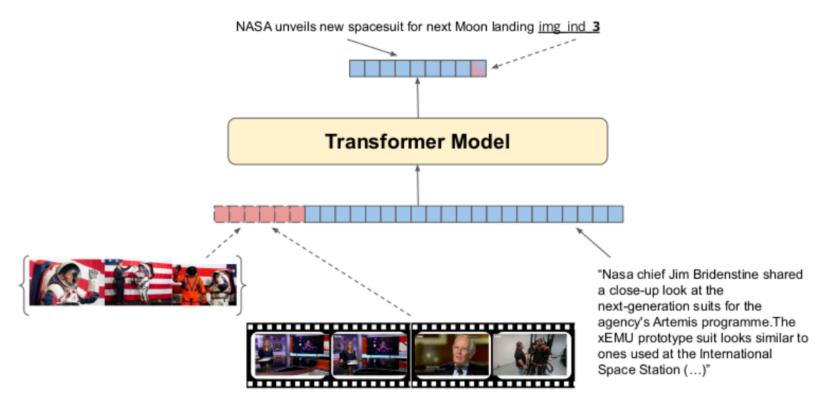


Figure 1: Overview of the proposed unified approach to MSMO. The visual tokens are appended to the text representation. The generated output includes the textual summary and the *index token* that indicates which input image (first, second, third, etc.) is picked as the pictorial summary. During training, a mixture of video-based, image-based, and text-only data is used.

Table of Contents

- **PMG (Personalized Multimodal Generation)**
 - PMG for Recommendation: multimodal → image with LLM
 - PMG for Preference Questions: multimodal → multimodal with Vision-Language Model
- **■** Personalized Generation
 - ullet Personalized Generation: text \rightarrow text without LLM
 - ullet Personalized Generation: item \rightarrow text without LLM
 - ullet Personalized Generation: text \rightarrow text with LLM
 - Personalized Generation: text → text with LLM & Human
 - (non-Personalized) Multimodal Generation: multimodal → multimodal
- Other Tasks of Multimodal Generation for Recommendation
- **■** What's Next?

Term: LLM – language models with capabilities similar to chatgpt, such as llama, claude, gemini, etc

- Multimodal Pretraining and Generation for Recommendation: A Tutorial, Web Conference 2024
- Multimodal Pretraining, Adaptation, and Generation for Recommendation: A Survey, arXiv:2404.00621

Other Tasks of Multimodal Generation for Recommendation

Marketing Copy Generation

Generate the promotional copy

GCOF: Self-iterative Text Generation for Copywriting Using Large Language Model, arXiv:2402.13667

Explanation Generation

Generate reasons why an item is recommended

Personalized Reason Generation for Explainable Song Recommendation. TIST 2019

■ Dialogue Generation

Generate questions for clarification during conversational search

Zero-shot Clarifying Question Generation for Conversational Search, Web Conference 2023

Table of Contents

- **PMG (Personalized Multimodal Generation)**
 - PMG for Recommendation: multimodal → image with LLM
 - PMG for Preference Questions: multimodal → multimodal with Vision-Language Model
- **■** Personalized Generation
 - \bullet Personalized Generation: text \rightarrow text without LLM
 - ullet Personalized Generation: item \rightarrow text without LLM
 - ullet Personalized Generation: text \rightarrow text with LLM
 - Personalized Generation: text → text with LLM & Human
 - (non-Personalized) Multimodal Generation: multimodal → multimodal
- **■** Other Tasks of Multimodal Generation for Recommendation
- What's Next?

Term: LLM – language models with capabilities similar to chatgpt, such as llama, claude, gemini, etc

- Multimodal Pretraining and Generation for Recommendation: A Tutorial, Web Conference 2024
- Multimodal Pretraining, Adaptation, and Generation for Recommendation: A Survey, arXiv:2404.00621

What's Next

- \blacksquare Multimodal \rightarrow multimodal PMG for Recommendation
- **■** Improve the control of correctness (text, image, video, etc)
- Include more modalities, such as audio, video
- **■** Interactive multimodal generation

Thanks and Questions?

Hiring junior academics, postdocs, PhD students

Contact email:

rayteam@yeah.net