
Continuous Intersection Joins Over Moving Objects
Rui Zhang1, Dan Lin2, Kotagiri Ramamohanarao3, Elisa Bertino4

1,3Department of Computer Science and Software Engineering, University of Melbourne
Carlton Victoria 3053, Australia
1rui@csse.unimelb.edu.au
3rao@csse.unimelb.edu.au

2,4Department of Computer Science, Purdue University
305 N. University St., West Lafayette, IN, USA

2lindan@cs.purdue.edu
4bertino@cs.purdue.edu

Abstract— The continuous intersection join query is compu-
tationally expensive yet important for various applications on
moving objects. No previous study has specifically addressed this
query type. We can adopt a naive algorithm or extend an existing
technique (TP-Join) to process the query. However, they compute
the answer for either too long or too short a time interval, which
results in either a very large computation cost per object update
or too frequent answer updates, respectively. This motivates
us to optimize the query processing in the time dimension.
In this study, we achieve this optimization by introducing the
new concept of time-constrained (TC) processing. Further, TC
processing enables a set of effective improvement techniques
on traditional intersection join algorithms. With a thorough
experimental study, we show that our algorithm outperforms the
best adapted existing solution by several orders of magnitude.

I. INTRODUCTION

Management of moving objects has become an imperative
task recently due to the increasing need for real-time infor-
mation in highly dynamic environments. In many previous
studies, moving objects such as mobile phone users or vehicles
have been modelled as points. The reason is that the objects’
extents are negligible compared to the size of the whole region
of interest. For example, ignoring the extents of vehicles does
not hurt much if we want to have an idea of how many cars are
in the central business district by performing a window query.
However, there are also many scenarios described as follows
where the extents of objects cannot be neglected. As shown in
Figure 1(a), a number of police cars (filled black rectangles)
are driving around in a city. Every police car can cover a
circle-shaped region in case of emergency calls. We need to
continuously keep track of the communities (gray rectangles)
covered (that is, intersected) by each police car. For another
example shown in Figure 1(b), a fleet of warships on the sea
is fighting an enemy bomber squadron. The attack range of
a bomber is a sector-shaped region in front of the bomber.
We need to continuously report those warships whose bodies
intersect any bomber’s attack range so that the warships can be
alerted to possible attack. In a military simulation, there can
be up to 100,000 objects that are moving [1] and a primitive
data management requirement is interest management, which
is actually an intersection join of the interest ranges of objects
[2], [1]. Furthermore, envision the example of Figure 1(b) in

CommunityCar

B

2 3

4

5

6

7

1

A

BomberWarship

(a) (b)

Fig. 1. Motivating examples

a large-scale online game where the number of fighters or
players may reach hundreds of thousands, the system has to
show each player possible enemy attacks all the time. These
are applications representing the execution of intersection joins
over moving objects (of nonzero extents) continuously.

To the best of our knowledge, no previous study has
specifically addressed the continuous intersection join query
over moving objects with updates. The only available way
to support this query type is through extending a previous
technique which was designed for other types of queries
[3] (details are in Section III). Our experiments show that
even with a small number (1,000) of objects, this extended
algorithm is still too slow to produce the result in real time.
In this paper, we address the problem of efficiently processing
continuous intersection joins over moving objects and make
the following contributions:

• Based on the key insight that the join result between
any two objects only needs to be valid until the next
update on any of the two objects, we propose the time-
constrained (TC) processing technique for the continuous
intersection join query and show how to optimize the
technique. Unlike previous works, which optimize from
the spatial aspects, this is the first attempt to optimize
continuous spatio-temporal queries in the time dimension.

• We investigate a set of effective improvement techniques



on traditional intersection join algorithms, enabled by TC
processing.

• We integrate the above techniques with carefully designed
structures into a robust and scalable solution.

• We performed an extensive experimental study, which
shows that our algorithm outperforms the best adapted
existing solution by several orders of magnitude.

The rest of the paper is organized as follows. Section II gives
the problem definition and a naive algorithm. In Section III,
we extend a previous technique to support the continuous
intersection join query. Then, we present out technique in
Section IV have a discussion on it in Section V. Section VI
reports the experimental study and Section VII reviews related
work. Finally, Section VIII concludes the paper.

II. PRELIMINARIES

In this section, we define the problem and then describe
TPR/TPR*-trees [4], [5] since we use them as the underlying
access methods. Subsequently, we provide a naive algorithm
for solving the problem.

A. Problem Formulation

We follow the common approach of representing positions
of moving objects, that is, by linear functions of time. Such
representations require less updates with position changes. We
consider objects with nonzero extents, instead of restricting to
only moving points. An object of irregular shape is represented
by its MBR (minimum bounding rectangle), whose sides are
parallel to the axes of the 2-dimensional space1. Specifically,
a moving object O in a 2-dimensional space is described by
its MBR 〈ORx−, ORx+, ORy−, ORy+〉 (“−” and “+” stand
for lower bound and upper bound, respectively) at reference
time tref and its VBR (velocity bounding rectangle), 〈OV x−,
OV x+, OV y−, OV y+〉.

The join is performed on two moving object sets, A and
B. Each object has a unique ID among all the objects in
A∪B. A management system maintains the information of the
objects and process queries on them. With the consideration
that the size of the data may be large and also in line with
previous studies [6], [7], [4], [5], we have implemented our
techniques assuming the data are disk resident, although our
techniques are applicable even if the data are held in
main memory. Each set of objects is indexed by a TPR-tree
(actually the variant TPR*-tree) due to TPR-trees’ efficient
management of moving objects with nonzero extents. An
update is sent to the management system when the difference
between the object’s actual parameters (position or velocity)
and parameters maintained in the management system exceeds
some threshold. Following many previous studies [8], [9],
[10], if an object’s actual parameters do not change for a
long time, the system still requires the object to update at
least once every TM timestamps. We call TM the maximum
update interval, which is the longest time interval between

1For ease of presentation, we focus on 2-dimensional spaces, though the
proposed techniques are applicable to higher-dimensional spaces.

two consecutive updates of an object. The reason for the
maximum update interval is as follows. Updates not only
keep the objects’ movement information up to date, but also
serve as heartbeat signals in practice. Without the maximum
update interval requirement, if an object does not communicate
with the management system for a long time, it is hard to
know whether the object keeps moving in the same way or
has disappeared accidentally without being able to notify the
management system. TM is a system parameter, which is the
same for all objects.

Orenstein [11] suggested that an intersection join on
irregular shapes should be processed in two steps: (1)Filter
Step: Find all the object pairs whose MBRs intersect each
other; (2)Refinement Step: For all the object pairs found in
the filter step, check whether the actual shapes of the objects
intersect. We focus on the filter step.

Definition 1: Let A, B be moving object sets, and let
Mbr be a function that returns the MBR of an object. The
continuous intersection join query is to find every pair
〈a, b〉 for every timestamp, a ∈ A, b ∈ B, that satisfies
Mbr(a) ∩ Mbr(b) 6= ∅.

Since the join result has to be presented all the time, we
assume that it can always be held in main memory. Producing
the continuous join result consists of two phases: computing
the initial join pairs (initial join) and then maintaining the join
result continuously as objects are updated (maintenance). The
initial join is performed only once, therefore the maintenance
has significantly higher weight in the total cost.

B. The TPR/TPR*-tree

We assume that the reader is already familiar with the
R*-tree [12]. The TPR-tree [4] extends the R*-tree [12] by
attaching time parameters to node regions so that the nodes
can bound moving objects. A leaf node of a TPR-tree is a
moving object whose MBR (VBR) bounds the MBRs (VBRs)
of the data objects inside. A non-leaf node of a TPR-tree is
a moving object that bounds inside its children, either leaf
nodes or other non-leaf nodes. The TPR*-tree [5] uses a set
of improved algorithms to build the TPR-tree and achieves an
almost optimal tree.

C. Processing Continuous Intersection Joins Naively

Recall that processing a continuous join (we omit “inter-
section” when the context is clear) consists of two phases: the
initial join and the maintenance. For the initial join, we can
use the naive algorithm described below to compute all the
possible join pairs from now to the infinite timestamp. For
the maintenance, whenever there is an object update, we need
to perform an answer update as follows. First, we remove all
the pairs involving the updated object from the current result;
then we join the object with the other dataset (still using the
naive algorithm) from the current timestamp to the infinite
timestamp and the newly found pairs are added to the current



Algorithm NaiveJoin (NA, NB)
1 for every eA in NA

2 for every eB in NB with
([t′s, t

′

e]← intersect(eA, eB , tc,∞)) 6=NULL
3 if NA is a leaf node
4 output 〈eA, eB , t′s, t

′

e〉;
5 else
6 ReadPage(eA.ptr); ReadPage(eB .ptr);
7 NaiveJoin(eA.ptr,eB .ptr);
End NaiveJoin

Fig. 2. Algorithm NaiveJoin

join result. Next, we give the naive algorithm for computing
join pairs.

Each dataset is indexed by a TPR-tree (trA and trB for A
and B, respectively). The basic idea is to use the bounding
relationship between a node of the TPR-tree and the entries
inside it. Let NA (NB) be a node from trA (trB). If NA does
not intersect NB , then none of the entries in the subtree rooted
at NA could intersect2 any of the entries in the subtree rooted
at NB , therefore we need not visit the subtrees. Otherwise,
there could be intersections between entries in the subtrees
and we should check the entries in them. This intersection-
or-not checking is performed recursively on both trees in a
top-down manner, until all possible intersections are explored.
It is a synchronous traversal on both trees. This algorithm is
named NaiveJoin and summarized in Figure 2.

The function intersect(eA, eB , ts, te) in line 2 determines
whether two entries eA and eB intersect each other during
the time interval [ts, te]. If yes, the time interval for the
intersection, [t′s, t

′

e], is returned; otherwise, NULL is returned.
The details of the function intersect() are shown in [13]. In
NaiveJoin, the time interval [tc,∞) (∞ denoting the infinite
timestamp) is input to the function intersect() so that we find
all possible join pairs in the future in one (synchronous) tree
traversal.

III. EXTENDING TIME-PARAMETERIZED JOINS FOR

CONTINUOUS JOINS

In this section, we extend a previous technique, the time-
parameterized join algorithm [3] to support the continuous join
query. The purpose is for us to learn from the inefficiency of
the extended algorithm and to use it for comparison in the
experimental study.

In [3], Tao and Papadias presented a set of spatio-temporal
queries called time-parameterized (TP) queries, including the
TP (intersection) join query. While the TP join query does not
answer the continuous (intersection) join query directly, it can
be extended to support the continuous join query. Next, we
first show how a TP join query is processed, and then show
how it can be extended for the continuous join query.

A TP query returns: (i) the objects that satisfy a certain
spatial query; (ii) the expiry time of the result given in (i); (iii)
the event that changes the result. That is, the answers are in the

2Actually the MBRs of the entries intersect each other. We omit “MBR”
when the context is clear.

a

4a

3b
4N

2N

1e 2e

1N
4a3a2a1a

3e 4e

4N3N
4b3b2b1b

1N

3N

2N

2a

2b

1a
1b

4b

2

8

6

4

108642

1

y

1

1 1

1

1

1

1

1

1

11

0

10

x

3

11

root B

root A

TPR−tree A

TPR−tree B

Fig. 3. A running example

format of triples, (objects, expiry time, event). Figure 3 shows
a TP intersection join query example. A consists of objects
{a1, a2, a3, a4} and B consists of objects {b1, b2, b3, b4}. The
current result is {〈a1, b1〉}. Suppose the current timestamp is
0. The first result change happens at timestamp 1 when b2

starts to intersect a2, so the expiry time of the current result is
1 and the event causing this change is {〈a2, b2〉}. Therefore,
the answer for the TP join query at the current timestamp is the
triple ({〈a1, b1〉}, 1, {〈a2, b2〉}). At any timestamp, there is a
“next event” that will change the result and the corresponding
timestamp is called the influence time of the event. In this
example, when a2 intersects b2 at timestamp 1, the next event
is b1 leaving a1 at timestamp 3, denoted by (〈a1, b1〉, 3) where
3 is the influence time. The subsequent events are (〈a2, b2〉, 4),
(〈a3, b4〉, 6) and (〈a3, b4〉, 8).

The TP join algorithm (TP-Join) is described as follows.
Each set of objects is indexed by a TPR-tree. A depth-first (or
best-first) traversal is performed on each tree synchronously
starting from the root. Suppose eA and eB to be two entries
in non-leaf nodes, one from each TPR-tree. The traversals go
down the subtrees pointed by eA and eB if one of the following
conditions hold: (i) the MBRs of eA and eB intersect; or (ii)
TINF (eA, eB) is less than or equal to the minimum influence
time of all object pairs seen so far, where TINF (eA, eB) means
the influence time of the pair 〈eA, eB〉. Condition (i) finds the
current join pairs and condition (ii) identifies the next event.
The traversals stop when leaf levels are reached for both trees.

In the same paper [3], Tao et al. suggested a way to extend
TP-Join to produce answers for the continuous join query. The
extended algorithm ETP-Join is described as follows. First,
TP-Join is run to obtain the current answer and the next event.
As time goes to the next event and the result changes, an
answer update is performed by running TP-Join to get the
new next event (no need to search for the new current answer
since they can be computed from the previous answer and the
event).When there is an update on object O, an answer update
is also performed by traversing the tree to find the object’s
influence time TINF (O). If TINF (O) is before the current
expiry time, then TINF (O) becomes the current expiry time
and O becomes the next event; otherwise, the update is simply



ignored (the tree already been traversed). By this means, join
pairs can be obtained for all the time.

IV. OUR APPROACH

We first analyze the NaiveJoin and ETP-Join algorithms,
and then present our approach to the problem, namely time-
constrained query processing.

A. Analysis

To process the join continuously, ETP-Join needs an answer
update (effectively, a tree traversal) every time there is an
object update or a change in the result. In highly dynamic
environments, result changes happen frequently even if there
is no object update. For the example in Figure 3, four
(synchronous) tree traversals are performed during the time
interval [0,5] (at timestamps 0, 1, 3, 4). Therefore, ETP-join
has to perform very frequent answer updates, which causes
high cost.

For NaiveJoin, answer update only has to be performed
upon an object update. Therefore, the answer updates are much
less frequent. However, the per-update computation cost of
NaiveJoin is much higher than that of ETP-Join, the reason
being the following. NaiveJoin computes all possible join pairs
from now to the infinite timestamp, while a run of TP-Join
will stop once the unvisited part of the tree can be pruned by
the candidate event’s influence time. Unless the velocities of
the objects are highly skewed (e.g., all moving in the same
direction), an MBR will expand in all four directions (-x,
+x, -y, +y), so two MBRs must intersect sometime in the
future. This causes a whole tree being accessed per answer
update, which is really expensive. For the example in Figure 3,
NaiveJoin obtains the same continuous join result as the ETP-
Join in just one traversal, but with more node accesses and
entry comparisons in the traversal. In particular, NaiveJoin
compares root A with root B, N1 with N3 and N2 with N4,
while ETP-join only compares root A with root B and N1

with N3 in its first TP-join run. NaiveJoin accesses two more
pages (N2, N4) and has more join computations (comparing
the entries in N2 with those in N4).

On one hand, ETP-Join has a low computation cost per
answer update but too frequent answer updates. On the other
hand, NaiveJoin has low-frequency answer updates but too
high computation cost per answer update. This contrast is even
clearer if we look at the time domain. ETP-Join has to run
TP-Join frequently because updates and changes of results are
frequent. The problem of ETP-Join is computing the result
for too short a time interval in each run. NaiveJoin has a
high computation cost per run because it returns the answer
up to the infinite timestamp. The problem of NaiveJoin is
computing the result for too long a time interval in each run.
This motivates us to optimize the query processing in the time
dimension. The crux of the problem is to choose a “good” time
interval for each join run. In what follows, we introduce the
new concept of time-constrained (TC) processing to solve this
problem.

B. Time-Constrained Processing

Our key insight is that the join result between any two
objects only needs to be valid until the next update on any
of the two objects. Actually, if an object issues an update,
all the predictions about this object’s intersection with other
objects in the future may become invalid immediately. We
have to perform a join between the updated object with
the other dataset anyway. In other words, an update of an
object invalidates the object’s join result starting from the
update timestamp to the future. Therefore an ideal time
interval for computing join pairs for an object is from the
current timestamp to the object’s next-update timestamp.
This ideal case is impossible in reality because we could
not know in advance an object’s next-update timestamp.
However, fortunately we have an upper bound of an object’s
next-update timestamp, that is, TM from now. TM is the
maximum update interval described in Section II-A. For an
object, we only need to find its join pairs with the other
dataset during the period [tc, tc + TM ]. Before tc + TM , this
object will have to issue an update and we will then find its
join pairs with the other dataset again for another TM period.
By this means, we can obtain correct answers for this object
continuously. One question remains: while doing this on one
object seems correct, can we do this on all objects and still
get correct join pairs between any two objects and for all the
time? Theorem 1 below gives a positive answer to the question.

Theorem 1: Let O be an object in one set and otherset(O)
be the set O does not belong to. Let tu be the update (or
insertion) timestamp of O. For any O, if we always process
the join between O and all the objects in otherset(O) for
the time interval [tu, tu + TM ] whenever there is an update
(or insertion) of O, the union of all the produced join pairs
is the correct answer for the continuous join query for all the
time.

The proof is given in [13]. This theorem indicates that,
whenever we process the join, either for the initial answer or
for the updates, we only need to compute join pairs for the time
interval [tu, tu +TM ] instead of [tu,∞]. It effectively imposes
a constraint on the query processing in time. Therefore we
call it time-constrained (TC) query processing. To apply it
on the NaiveJoin algorithm, we simply change intersect(eA,
eB , tc,∞) in line 2 of the algorithm to intersect(eA, eB , tc,
tu + TM ). We call the resultant algorithm TC-Join.

TC-Join has the advantages of both ETP-Join and NaiveJoin,
that is, it has a small computation cost per object update
([tu, tu + TM ] is much smaller than [tu,∞]) and only needs
to update the answer when there is an object update. For
the example in Figure 3, suppose TM = 5. During the time
interval [0,5], TC-Join only performs one tree traversal; for
this traversal, it only compares root A with root B and N1

with N3 (TC-Join does not access N2 and N4 because it knows
they will not intersect in the time interval [0,5] by comparing
e2 and e4). TC-Join is better than both ETP-Join, which has



four tree traversals, and NaiveJoin, which performs one tree
traversal but with all nodes accessed. This clearly shows the
benefit of TC processing.

C. Making the Most of TC Processing

Since TM is the maximum time interval between two
updates of an object, the actual time interval between two
updates may be much shorter than TM . If we consider a
uniform distribution, the average update time interval between
two updates is TM/2. Therefore, one may ask: can we obtain
better time constraint than [tu + TM ]? The answer is again
positive based on theorem 2 below. We reuse the notation for
Theorem 1. In addition, if there is an update on any object in
set Z, we say that there is an update on Z. Let lu(Z) denote
the latest update on Z before the current timestamp.

Theorem 2: For any O, if we always process the join
between O and all the objects in otherset(O) for the time
interval [tu, t(lu(otherset(O))) + TM ] whenever there is an
update (or insertion) of O, the union of all the produced join
pairs is the correct answer for the continuous join query for
all the time.

The proof is given in [13]. An example for Theorem 2 is as
follows. Suppose TM = 5, the current timestamp is 7, and we
know that all the objects in B were updated before timestamp
4. Then for an update on A at the current timestamp, we
only need to compute its join pairs with B until timestamp
9 (9=4+5), which means the processing time interval is [7,9].
This is even shorter than [7, 12] (12=7+5). t(lu(otherset(O)))
is the latest update timestamp (lut) of otherset(O) before O
is updated. The smaller the lut, the stricter the time constraint
for processing the query. The problem is how to reduce the lut
for a set of objects. Given a set of objects, we cannot change
the lut of it. However, part of the set could have smaller lut and
if we can separate them from those that have large lut, then
we can still achieve stricter time constraint for processing that
part of the set. We propose to group objects into time buckets
based on their latest updates; therefore the set of objects in
each time bucket (except the last one) has a smaller lut than
that of the whole dataset. To group objects into time buckets
for TPR-trees, a similar idea as used in the Bx-tree [8] can be
exploited. Particularly, we divide the time axis into equi-length
time buckets; for each time bucket, a TPR-tree is used to index
all the objects whose latest update time fall in the bucket. This
results in a group of TPR-trees based on multiple time buckets,
which we call the MTB-tree.

To handle updates in the MTB-tree, we first identify which
time bucket the object is currently stored from its last update
timestamp3. We delete the object from the TPR-tree in that
time bucket and insert it into the current TPR-tree. Typically
the length of a time bucket can divide TM exactly. Figure 4
shows an example where the length of a time bucket is TM

2
and

3We assume that the last update timestamp is sent together with the update
information.

MT1
2 MT3

2MT 2TM

Tr 1 Tr 2 Tr 3

time
updateupdate

0
insert

insert

MTB−tree
TPR−trees

Fig. 4. The MTB-tree

the current timestamp is in the third time bucket [TM , 3TM

2
].

Updates result in deletions from Tr1 or Tr2 and insertions
to Tr3. Here, lut for the whole dataset is 3TM

2
, while the lut

for the objects in Tr1 and Tr2 are TM

2
and TM , respectively.

Thereby we reduce lut for many objects in the set.
The continuous join is processed as follows. The initial

join is still performed on two single TPR-trees. After the
maintenance phase begins, we start to divide the time axis
into time buckets and change the single TPR-tree into a MTB-
tree. When there is an object update on A, it is first updated
on the MTB-tree on A; then it is joined with the MTB-tree
on B. Specifically, the object is joined with each TPR-tree
of B using the TC-Join algorithm, but for an even shorter
period [tc, teb + TM ], where teb denotes the end of the time
bucket of the TPR-tree. Suppose the MTB-tree in Figure 4 is
for B, then we join the updated object with Tr1, Tr2 and
Tr3 for the time interval [tc,

3TM

2
], [tc, 2TM ] and [tc,

5TM

2
],

respectively. We call the above method MTB-Join. TC-Join is
a special case of MTB-Join when the whole time dimension
is one time bucket.

If TM is m times the length of a time bucket, there are
at most m+1 TPR-trees in the MTB-tree. Larger m results
in more TPR-trees and smaller lut for each tree, but also
incurs more tree maintenance cost and increases the number
of combinations between two joining MTB-trees. Following
the rationale of the Bx-tree [8], we used TM

2
as the length of

a time bucket in our implementation.

D. Improvement Techniques

Besides cutting the workload in time dimension, TC pro-
cessing enables a set of effective improvement techniques
on traditional intersection join algorithms. We explore these
improvement techniques below.

1) Plane Sweep: Various studies [14], [15] have shown
that the plane sweep (PS) technique provides a good order of
accessing two sets of rectangles and hence saves computation
for processing spatial joins on static rectangles. However,
no study has shown how to apply this technique to moving
rectangles. The traditional PS is not applicable since the
rectangles not intersecting each other at a timestamp may
intersect later due to their movements. In what follows, we



will first describe PS for static rectangles and then discuss
how to adapt PS to moving rectangles for a constrained time
interval.

First, the two sets of rectangles are sorted respectively based
on their lower left corners in a dimension, say x, to obtain two
sorted sequences Sa=〈a1, a2, ...〉 and Sb=〈b1, b2, ...〉. Then, all
the rectangles in both sequences are processed in increasing
order of their x-coordinates of the lower left corner. Let c
be the current rectangle to be processed. Let e.xl (e.xu)
denote the lower (upper) bound of rectangle e in dimension
x. Suppose b1.xl < a1.xl, then initially c is set to b1.
The rectangles in Sa are scanned until a rectangle e with
e.xl > b1.xu. The scanned rectangles in Sa must overlap b1

in dimension x, so they are further checked for overlap with
c in dimension y. If any of them also overlaps x in dimension
y, it is added to the join answer set. Now b1 is done and
marked as processed. c moves on to the next rectangle with the
smallest xl-value in Sa ∪Sb, say, a1. Then Sb is scanned and
compared with c similarly as above. This process continues
until a sequence is processed completely.

We find that essentially PS needs two parameters to work. A
lower bound lb and an upper bound ub. lb is used to keep two
sets of objects sorted in two sequences; and then they are ac-
cessed in increasing order of lb. While an object is accessed, its
ub is checked against lb of the objects from the other sequence.
Two objects O1 and O2 must not intersect if O1.ub < O2.lb.
This is the fundamental requirement for choosing the two
parameters. As seen from the previous sections, our join
algorithm has a time constraint [t0, t1] as part of the input. This
means we need to consider the movements of the rectangles
in [t0, t1]. Suppose we decide to sort in the dimension x. Let
ORx−(t) (or ORx+(t)) denote O’s lower (or upper) bound
at timestamp t. We can use min(ORx−(t0), ORx−(t1)) as lb
and max(ORx+(t0), ORx+(t1)) as ub since they satisfy the
requirement described above. Then we obtain the algorithm
to compute intersections of two sets of moving objects using
PS, called PSIntersection (details are given in [13]).

Note that the constrained processing time [t0, t1] is nec-
essary to enable the lower/upper bound property for PS.
Otherwise, if [t0,∞] is the time interval for process-
ing the intersection, then we will not be able to use
max(ORx+(t0), ORx+(t1)) to serve as ub because of the
infinite time stamp. Further, the time constraint [t0, t1] greatly
reduces the chance of intersection and makes PS more effec-
tive than the static case.

2) Dimension Selection: We need to sort the entries (mov-
ing rectangles) before running PSIntersection. The choice of
sorting dimension also has an impact on the computation cost.
Consider the two examples in Figure 5. Lines 1, 2, 3 and 4 are
the projections of some entries on dimension x. The dashed
lines show their movements as time goes from t0 to t1. Line
1 corresponds to entry a1 from node NA; Lines 2, 3 and 4
correspond to entries b2, b3 and b4, respectively, from node
NB . For Figure 5 (a), a1.ub > b2.lb, a1.ub < b3.lb, b4.lb,
therefore we only check whether a1 intersects b2 during
PS. For Figure 5(b), a1.ub > b2.lb, b3.lb, b4.lb, therefore we

x
1 2 3 4 1 2 3 4

0t

1t

0t

1t

(b)
x

(a)

t t

Fig. 5. Selecting sorting dimension

need to check whether a1 intersects b2, b3 and b4 during PS.
Suppose a1 intersects b2, b3 and b4 in dimension y. Hence a1

actually only intersects b2 in both cases. However, the entries
in Figure 5(b) have an intersection test cost three times that of
Figure 5(a). This cost difference is caused by the difference of
their speed. The larger the speed, the larger the region the entry
moves, and hence the greater the chance that bi.lb is smaller
than a1.ub, and hence the more the intersection test costs.
Based on this observation, we first compute the sum of the
absolute values of the speed of all entries in each dimension.
Then the dimension with the smallest sum is selected as the
sorting dimension.

3) Intersection Check: Only the entries of NA and NB

that intersect NA.MBR∩NB .MBR could intersect each other.
Therefore, before computing intersections of the entries from
two nodes using PSIntersection, we first test whether the
entries intersect NA ∩ NB . We only run PSIntersection on
entries that pass this test. This intersection check technique
has been used before on static datasets [14]. Here, intersection
is more effective because of the constrained processing time.
Note that NA∩NB is a rectangle that moves in the constrained
time interval [t0, t1]. Suppose they intersect during [ts, te].
[ts, te] is actually an even stricter time constraint imposed
on the intersection check. As we traverse the tree to a lower
level, [ts, te] here serves as [t0, t1] to the lower level. Because
[ts, te] ⊂ [t0, t1], the time constraint becomes stricter and
stricter. Therefore, the intersection check on moving objects
have a stronger pruning power than that on static objects.

4) An Improved Join Algorithm: All the techniques pre-
sented in previous subsections are integrated into one join
algorithm ImprovedJoin, shown in Figure 6. Compared with

Algorithm ImprovedJoin (NA, NB , t0, t1)

1 for all entries in NA and NB

2 Intersection check with intersect(NA, NB , t0, t1),
let Sa (Sb) be the entries from NA (NB);

3 Determine sorting dimension;
4 sort(Sa); sort(Sb);
5 Sc ← PSIntersection(Sa, Sb, ts, te);
6 for every entry 〈ai, bi, tsi, tei〉 ∈ Sc

7 if NA is a leaf node
4 output 〈ai, bi, tsi, tei〉;
5 else
6 ReadPage(ai.ptr); ReadPage(bi.ptr);
7 ImprovedJoin(ai.ptr, bi.ptr, tsi, tei);
End ImprovedJoin

Fig. 6. Algorithm ImprovedJoin



NaiveJoin, ImprovedJoin takes two additional parameters t0
and t1, which reflect the constrained processing time. First,
we perform the intersection check. [ts, te] is returned as the
time interval during which NA intersects NB . We can calculate
the sum of the absolute values of the speed at the same time
as the intersection check. Therefore we can avoid accessing
the entries again for selecting the sorting dimension. After
sorting dimension selected, we sort both sequences of entries
and perform PS to obtain join pairs.

V. DISCUSSIONS

TC processing can be applied to a wide range of continuous
query types on moving objects such as continuous window
queries and kNN queries. Take continuous window queries
as an example. It is essentially computing the intersection
between objects and query windows. Again, a naive algorithm
would compute the intersection for the time interval [tc,∞].
We can apply the TC processing technique and only compute
the intersection for [tc, tc + TM ]. Further, we can index the
objects by a MTB-tree and use even tighter time constraints
for each TPR-tree as we do in MTB-Join. Similarly, we can
imagine applying TC processing to other queries and may
enable other algorithmic improvements.

TC processing can also be easily grafted onto many ex-
isting continuous query algorithms on moving objects. This
is because previous studies have focused on how to improve
algorithms in the spatial aspects. Our work is the first attempt
to optimize the processing in an orthogonal aspect, the time
dimension. For example, the continuous kNN algorithm in [16]
needs to compute kNN candidates for a time interval [ts, te]
as traversing a TPR-tree. If te > ts + TM , we can apply
TC processing and reduce the time interval to [ts, ts + TM ].
The continuous kNN and range join algorithms in [17] put all
events in a queue and process them one by one. We can apply
TC processing here and only process events that happen in
[tc, tc + TM ]. More generally, TC processing can be applied
to any continuous query algorithm as long as the data objects
get updated and we can find an upper bound for the update
time.

VI. EXPERIMENTAL STUDY

In this section, we report the results of our experimental
study. First, we evaluate the impact of TC processing and
the impact of the improvement techniques on join algorithms
independently in Sections VI-B and VI-C, respectively. Then,
we compare the overall performance of our techniques for
the continuous intersection join with the naive algorithm,
NaiveJoin, and the best possible competitor, ETP-Join, in
Section VI-D.

A. Experimental Setup

All the experiments were conducted on a desktop with
2.6GHz Pentium IV CPU and 1GB RAM. The disk page size
is 4K bytes, and an LRU buffer with 50 pages is used (this
buffer size is suggested by [3]). We measure both the number
of disk I/Os and CPU time.

Due to limited availability of real datasets of moving
objects, we used the data generator developed by the authors
of [4] to generate synthetic datasets with space domain of
1000×1000. We perform joins on two datasets with the same
cardinality ranging from 1K to 100K. Objects are of square
shape. We use the following three types of datasets: (i)Uniform
dataset, where object positions and moving directions are
generated randomly according to a uniform distribution; the
speed of the objects is randomly distributed between 0 and the
maximum object speed. Five maximum speeds 1, 2, 3, 4, 5 are
used. (ii)Gaussian dataset, where object positions follow the
Gaussian distribution. The speed of the objects are generated
as in (i). (iii) Battlefield dataset, where objects of two datasets
are first clustered on opposite sides of the space and then
move toward the opposing party, simulating the scenario of a
battlefield. By default, we use the uniform dataset.

We use the TPR*-tree[5] as the underlying access method.
For each dataset, we build a TPR*-tree at timestamp 0, and
then keep updating it as follows. At every timestamp, we ran-
domly change directions or speed of some objects to generate
updates. Every object is required to be updated at least once
during the maximum update interval TM . The continuous join
processing starts from timestamp 0. The parameters used in
the experiments are summarized in Table I, where values in
bold denote default values used.

Parameter Setting
Node capacity 113
Maximum update interval 60, 120, 240
Maximum object speed 1, 2, 3, 4, 5
Object size (% of space) 0.5%, 0.1%, 0.2%, 0.4%, 0.8%
Dataset size 1K, 10K, 50K, 100K
Dataset Uniform, Gaussian, Battlefield

TABLE I

PARAMETERS AND THEIR SETTINGS

B. Effect of TC Processing

To evaluate the impact of imposing time constraints on
query processing, we do not use any join improvement
techniques presented in Section IV-D. Figure 7 shows the
performance for the initial join computation with and without
imposing time constraints. The one denoted as “Non Time-
constrained” computes all possible join pairs from tc to the in-
finite timestamp, which is NaiveJoin. The “Time-constrained”
version computes join pairs for only the time interval [0, 60].
MTB-Join uses a single tree before getting the initial result,
so it corresponds to the “Time-constrained” join in this figure.
We observe that both the I/O cost and total response time
of NaiveJoin are much higher (up to 15 times) than those of
MTB-Join, which clearly shows the huge benefit we gain from
TC processing. NaiveJoin performs worst mainly because it
returns join pairs from the current timestamp to the infinite
timestamp. Every node in one index overlaps with almost all
nodes in the other index in some future time. For maintenance,
the join processing is almost the same as the initial join, but



100

1000

10000

100000

1000000

10000000

1K 10K 50K 100K
Number of moving objects per dataset

I/
O

 c
o

s
t

Non Time-Constrained
Time-Constrained

(a) I/Os

0.01

0.1

1

10

100

1000

1K 10K 50K 100K
Number of moving objects per dataset

T
o

ta
l 

re
s

p
o

n
s

e
 t

im
e

 (
s

) Non Time-Constrained
Time-Constrained

(b) Total response time

Fig. 7. Effect of TC processing

on a smaller number of objects (the updated objects), so the
impact of TC processing is very similar. The experiments
on other settings (such as different data distributions, object
speed) also give similar results, and hence we omit them here.

C. Effect of Improvement Techniques on Joins

In this section, we examine the impact of the improvement
techniques on join algorithms independently of the effect of
TC processing. We use the same time interval [0, 60] for
all techniques so that the time constraint does not have an
effect on the relative performance. Figure 8 shows the join
performance when we use different combinations of the three
techniques: PS, DS(dimension selection) and IC(Intersection
Check). “None” means using none of the techniques and “All”
means all techniques are used.

0

1000

2000

3000

4000

None IC PS DS+PS IC+PS ALL

Types of techniques

I/
O

 c
o

s
t

MTB-join

(a) I/Os

0

0.3

0.6

0.9

1.2

1.5

None IC PS DS+PS IC+PS ALL

Types of techniques

T
o

ta
l 

re
s

p
o

n
s

e
 t

im
e

 (
s

)

MTB-join

(b) Total response time

Fig. 8. Effect of improvement techniques

From Figure 8(b), we observe that the total response time
decreases as more and more techniques are applied. From
Figure 8(a), we find that only PS reduces I/O cost (about
60% compared to the algorithm using none of the techniques)
while the other techniques only affect total response time
time. When all techniques are applied, the total response
time is improved by the factor of about 6. Such behavior
can be explained as follows. PS provides a better order for
comparing nodes in two trees, which saves both I/O and CPU
costs. DS and IC mainly reduce the CPU time since both of
them aim at reducing number of entries to be compared in
two nodes. Specifically, DS chooses the dimension that needs
less intersection comparisons for entries in two nodes. IC
provides both space and time constraints to prune entries to be
compared. This is also the reason why “IC+PS” improves the
performance more than “DS+PS” does. Again, the impact of
these techniques on maintenance cost follow similar behavior
and hence we omit them here.

D. Overall Performance Comparison

We now compare our technique, MTB-join (using the Im-
provedJoin algorithm in Section VI-C) with NaiveJoin (Sec-
tion II-C) and ETP-Join (Section III) by evaluating two phases
of the continuous join processing: initial join and maintenance.

1) Initial Join: We compare the initial join computation
cost of the three approaches by varying the dataset size, data
distribution, object speed and object size, respectively. When
we vary one parameter, the other parameters are set to default
values.

10

100

1000

10000

100000

1000000

10000000

1K 10K 50K 100K

Number of moving objects per dataset

I/
O

 c
o

s
t

NaiveJoin

ETP-join

MTB-join

(a) I/Os

0.01

0.1

1

10

100

1000

1K 10K 50K 100K

Number of moving objects per dataset

T
o

ta
l 
re

s
p

o
n

s
e
 t

im
e
 (

s
) NaiveJoin

ETP-join
MTB-join

(b) Total response time

Fig. 9. Initial join cost when varying dataset size

Figure 9 shows the effect of varying the dataset size. We
observe that NaiveJoin has extremely high cost compared
to MTB-Join and ETP-Join, and the gap between their total
response time increases rapidly as dataset size increases. When
the dataset size is 100K, the initial join time of NaiveJoin is
about half an hour, which is intolerable. Also, NaiveJoin is
much worse than MTB-Join in maintenance because NaiveJoin
does not use any improvement technique and needs to compute
the join to the infinite timestamp for each updated object. Due
to such an uncompetitive fact of NaiveJoin, we do not consider
it in the remaining experiments. Compared to Figure 7, here
MTB-Join performs far better than NaiveJoin because of the
use of all the improvement techniques in MTB-Join.

It is interesting to see that the total response time of MTB-
Join is still much less (please note the logarithmic scale) than
that of ETP-Join even though MTB-Join may need to compute
join results for a longer time interval in each tree traversal. In
particular, MTB-Join outperforms ETP-Join by up to 4 times
in both I/O cost and total response time, which is mainly due
to the improvement techniques on join algorithms.

Figure 10 shows the effect of the data distribution, where
we can see that MTB-Join is superior to ETP-Join for all

1345 12343 117

2107 20325679

0%

20%

40%

60%

80%

100%

Uniform Gaussian Battlefield

Data distribution

I/O
 c

o
st

 c
o

m
p

ar
is

o
n



MTB-join ETP-join

(a) I/Os

0.29
0.019

1.02
13.15

0.136

8.39

0%

20%

40%

60%

80%

100%

Uniform Gaussian Battlefield

Data distribution

R
es

p
o

n
se

 t
im

e 
co

m
p

ar
is

o
n



MTB-join ETP-join

(b) Total response time

Fig. 10. Varying the data distribution



0

2000

4000

6000

8000

10000

1 2 3 4 5
Maximum speed

I/O
 c

o
st



ETP-join

MTB-join

(a) I/Os

0

1

2

3

4

1 2 3 4 5
Maximum speed

T
o

ta
l r

es
p

o
n

se
 t

im
e 

(s
) ETP-join

MTB-join

(b) Total response time

Fig. 11. Varying the maximum object speed

three types of data distributions. MTB-Join saves about half
of the I/O cost compared to ETP-Join for each case, and the
total response time saving is even higher (up to 86% for the
battlefield dataset). These improvements are again attributed
to the improvement techniques on join algorithms.

The results of the experiments where we vary the maximum
object speed and the object size are shown in Figures 11 and
12, respectively. MTB-Join outperforms ETP-Join in all cases
for the same reasons as stated above.

0

1000

2000

3000

4000

5000

0.5% 1% 2% 4% 8%
Moving object size

I/O
 c

o
st



ETP-join

MTB-join

(a) I/Os

0

0.5

1

1.5

2

2.5

0.5% 1% 2% 4% 8%
Moving object size

To
ta

l r
es

po
ns

e 
tim

e 
(s

) ETP-join

MTB-join

(b) Total response time

Fig. 12. Varying moving object sizes

2) Maintenance: The maintenance cost is amortized by the
number of updates at each timestamp. In all the subsequent
experiments, we start measuring the average maintenance cost
from timestamp TM , assuming the timestamp for the initial
join is 0.

Figure 13 shows the average maintenance cost per update
during [60, 240](by default, TM =60) when varying dataset
size. Observe that MTB-Join achieves significant improvement
over ETP-Join in terms of both I/Os and total response time
(104 times!) and the gap between them increases with the
dataset size. Further, we observe that even for very small

0.1

1

10

100

1000

10000

100000

1K 10K 50K 100K

Number of moving objects per dataset

I/
O

 c
o

s
t ETP-join

MTB-join

(a) I/Os

0.00001

0.0001

0.001

0.01

0.1

1

10

1K 10K 50K 100K

Number of moving objects per dataset

T
o

ta
l 

re
s

p
o

n
s

e
 t

im
e

 (
s

)

ETP-join

MTB-join

(b) Total response time

Fig. 13. Maintenance cost with the effect of dataset sizes

datasets (1K objects), the per-update response time of ETP-
Join is quite large (0.26 second). Since each object is updated
at least once during the maximum update interval (60 times-
tamps), the number of updates at each timestamp is at least 33
for the two 1K datasets. Thus, the total time required to process
these updates by ETP-Join is 8.6 seconds for each timestamp.
Considering the capability of human perception, 0.1 second
may be a preferable choice for a timestamp [1]. Then ETP-
Join is far inferior and is unable to produce the result in time.
Even if the two datasets are held in main memory, ETP-Join
still needs at least 6.3 seconds to produce the result for one
timestamp. As for our algorithm MTB-Join, it only takes about
1 millisecond to produce result at each timestamp for the 1K
datasets.

The reasons for MTB-Join’s huge performance gain are
highly constrained processing time (through grouping objects
into different time buckets) and the improvement techniques.
Further, ETP-Join has to perform a synchronous traversal on
the trees whenever there is a result change or an update,
while MTB-Join only needs to perform constrained joins upon
updates.

We also varied other parameters in the experiments such
as maximum update interval, data distributions, object speed
and object sizes. The results have very similar behavior and
their details are given in [13]. Recall that maintenance has
significantly higher weight in the total cost of a continuous
join, therefore, how MTB-Join compares to ETP-Join in
maintenance cost means more than their comparison in the
initial join. Based on this rationale and the results above, we
say that MTB-Join outperforms ETP-Join by several orders of
magnitude.

VII. RELATED WORK

Despite many efforts devoted into moving object databases,
such as index structures [8], [9], [10], [18] and other contin-
uous queries [16], [19], [20], there is little work specifically
addressing continuous intersection joins over moving objects
with updates. Mokbel et al. [7] use shared computation to
process multiple continuous queries on moving objects. They
do not address join queries, but use a join of queries to achieve
shared computation. If we view the queries as a set of objects
joining with the real data objects, then their algorithm is very
similar to NaiveJoin in our paper. The TP-join algorithm [3]
is related and discussed in Section III.

There are works on other types of joins over moving
objects. Iwerks et al. [6] address continuous semi-joins over
moving points; Arumugam et al. [21] address closest-point-
of-approach joins over moving object histories. Both of them
are quite different from our problem of intersection joins
between objects with nonzero extents. The most related work
is by Iwerks et al. [17]. They address continuous range
joins, which can be viewed as intersection joins on circles.
However, there are many cases where ranges of objects are
more tightly bounded by rectangles rather than circles such
as the communities, ships and attack ranges of bombers in
Figure 1. Therefore, we still need to study intersection joins



on rectangular ranges. The algorithm in [17] is not directly
applicable to our problem, but our TC technique can be applied
to their algorithm as discussed in Section V.

There is a rich literature on traditional intersection joins
[22], [15]. Most of the techniques are not applicable to
continuous joins on moving objects. Brinkhoff et al. [14]
investigated several techniques to reduce join cost for objects
indexed in R*-trees [12]. These techniques were designed for
static object indexes. Some of them such as plane sweep can
be adapted to moving objects, which we have discussed in
Section IV-D.

VIII. CONCLUSIONS

In this paper, we addressed the problem of processing con-
tinuous intersection joins over moving objects by introducing
the time-constrained (TC) query processing technique. Instead
of processing the query for an overlong time, we only process
it to a time point necessary to guarantee the correctness
of the result. TC processing can be further optimized by
grouping objects into time buckets. We also showed a set of
effective improvement techniques on traditional intersection
join algorithms, enabled by TC processing. All the techniques
are integrated in a single algorithm and our experimental
results demonstrate the effectiveness of TC processing. Our
algorithm outperforms the best adapted existing solution by
several orders of magnitude, making it realistic to process
continuous intersection join queries in real time.

The TC processing technique is applicable to a wide class
of continuous queries and can be grafted onto many other
algorithms easily.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
comments that improved our paper. This work is supported
by the ECR Grant provided by the University of Melbourne
under Proposal RMS number 600106.

REFERENCES

[1] K. L. Morse, “Interest management in large-scale distributed simula-
tions, Tech. Rep. ICS-TR-96-27, 1996.

[2] J. S. Dahmann, R. Fujimoto, and R. M. Weatherly, “The department of
defense high level architecture,” in Winter Simulation Conference.

[3] Y. Tao and D. Papadias, “Time-parameterized queries in spatio-temporal
databases,” in SIGMOD, 2002.

[4] S. Saltenis, C. S.Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing
the positions of continuously moving objects,” in SIGMOD, 2000.

[5] Y. Tao, D. Papadias, and J. Sun, “The TPR*-tree: An optimized spatio-
temporal access method for predictive queries,” in VLDB, 2003.

[6] G. S. Iwerks, H. Samet, and K. P. Smith, “Maintenance of spatial
semijoin queries on moving points.” in VLDB, 2004.

[7] M. F. Mokbel, X. Xiong, and W. G. Aref, “Sina: Scalable incremen-
tal processing of continuous queries in spatio-temporal databases.” in
SIGMOD, 2004, pp. 623–634.

[8] C. Jensen, D. Lin, and B.C.Ooi, “Query and update efficient B+-tree
based indexing of moving objects,” in VLDB, 2004.

[9] G. Kollios, D. Gunopulos, and V. J. Tsotras, “On indexing mobile
objects,” in PODS, 1999.

[10] J. M. Patel, Y. Chen, and V. P. Chakka, “STRIPES: An efficient index
for predicted trajectories,” in SIGMOD, 2004.

[11] J. Orenstein, “Spatial query processing in an object-oriented database
system,” in SIGMOD, 1986, pp. 326–336.

[12] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-
tree: An efficient and robust access method for points and rectangles,”
in SIGMOD, 1990.

[13] R. Zhang, D. Lin, R. Kotagiri, and E. Bertino, “Continuous inter-
section joins over moving objects. A full version of this paper,”
http://www.cs.mu.oz.au/∼rui/publication/TR mj.pdf.

[14] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient processing of
spatial joins using r-trees.” in SIGMOD, 1993.

[15] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,” in
SIGMOD, 1996, pp. 259–270.

[16] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest and
reverse nearest neighbor queries for moving objects.” VLDB Journal,
vol. 15, no. 3, pp. 229–249, 2006.

[17] G. S. Iwerks, H. Samet, and K. P. Smith, “Maintenance of k-nn and
spatial join queries on continuously moving points.” TODS, vol. 31,
no. 2, pp. 485–536, 2006.

[18] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches in query
processing for moving object trajectories,” in VLDB, 2000.

[19] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
partitioning: An efficient method for continuous nearest neighbor mon-
itoring.” in SIGMOD, 2005.

[20] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu, “Motion adaptive indexing
for moving continual queries over moving objects.” in CIKM, 2004.

[21] S. Arumugam and C. Jermaine, “Closest-point-of-approach join for
moving object histories.” in ICDE, 2006.

[22] M.-L. Lo and C. V. Ravishankar, “Spatial hash-joins,” in SIGMOD, 1996,
pp. 247–258.


