
ReadMe of the Code of the P+-Tree

Beta version 1.0

Rui Zhang

rui@csse.unimelb.edu.au

http://www.csse.unimelb.edu.au/∼rui

Department of Computer Science

and Software Engineering,

The University of Melbourne,

Carlton, Victoria, Australia, 3053

2007

1



1 Paper related to this code

Rui Zhang, Beng Chin Ooi, Kian-Lee Tan: Making the Pyramid Technique

Robust to Query Types and Workload, International Conference on Data
Engineering (ICDE), Boston, 2004.

2 Copyright

Version 1.0 (Beta Test)
Copyright (c) Rui Zhang, 2007.

Permission is hereby given for the use of the code subject to the following
conditions:

1. The code will not be sold for profit without explicit written permission
from Rui Zhang.

2. This copyright notice and author information will not be altered.

3. All bug fixes will be returned to the rui@csse.unimelb.edu.au inclusion in
future releases.

Please check the following website for possible future releases.

http://www.csse.unimelb.edu.au/∼rui

3 Implementation Notes

The code of the GiMP is based on a B+-tree coded by Dai Haoyu.

4 How to Use the Code

4.1 Compilation

The code was compiled on Fedora 2 and can be compiled on most Linux and
Unix systems. Use the command “make” to compile.

4.2 Follow the following steps to run the code

1. Data domain and type: The code assumes that data are of type
float, and normalized to [0,1]d. The data type is defined by the con-
stant DATA TYPE in file “btree.h”. E.g. “typedef float DATA TYPE;”
means the data are of type float.

2. Dimensionality: Define the dimensionality of the data space by defining
the constant D in the file “btree.h”. E.g. “#define D 4” means dimen-
sionality is 4.

2



3. Other parameters: The order of division of the space determines how
much the data space is divided. It is defined as a constant “T” in the
main program “pplus.c”. “#define T 4” means the order of division is 4
and there will be 24 = 16 subspaces after division. Suggested value for T
is 6 to 8.

4. Data: Data points are sequentially stored one by one in a binary file
called “data0”. A data point is stored dimension by dimension. “data0”
must be put in the directory “cluster”. If there is already a “data0” in
the directory “cluster”, simply overwrite it with your data file.

5. Space division: Before building the P+-tree, an auxiliary structure
called the “space-tree” must be created first. Compile the program “di-
videspace.c” in the directory “cluster” to an executable, say, “ds”; then
run the executable to divide space and build the space-tree. The dimen-
sionality also needs to be defined for the program “dividespace.c”, which
is defined by the constant “D”. When running “ds”, the order of division
is given as an input. The same value should be used here as the value
defined for “T” in the file “pplus.c”. After running “ds”, the space-tree is
built and stored as a binary file “SpaceTree”.

6. Queries: In the main program (“pplus.c”), queries are read from files.
The query file is referred by the pointer “fp query”. Queries are stored
sequentially one by one in binary format. A window query is stored in the
format of {l1, u1, l2, u2, ..., ld, ud}, where li and ui are the lower and upper
bounds of the query window in dimension i.

7. Compile the code: After the above settings, compile the code by “make”.
The executable ”pplus” is generated.

8. Run the executable: Build the index by running “pplus b”. Then
perform the window queries by “pplus”

9. Results: Results are written to the file “result” in text format. The
coordinates of each answer point are listed for each query.

5 Optimization Notes

1. Internal nodes of the B+-tree are loaded into memory before the queries.
The internal nodes are less than 0.3% of the whole index, which can fit
into memory. To test the effect of buffer, code needs to be touched up.

3


